MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnmadd Structured version   Visualization version   GIF version

Theorem prnmadd 11066
Description: A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prnmadd ((𝐴P𝐵𝐴) → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem prnmadd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prnmax 11064 . 2 ((𝐴P𝐵𝐴) → ∃𝑦𝐴 𝐵 <Q 𝑦)
2 ltrelnq 10995 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 5765 . . . . . 6 (𝐵 <Q 𝑦 → (𝐵Q𝑦Q))
43simprd 495 . . . . 5 (𝐵 <Q 𝑦𝑦Q)
5 ltexnq 11044 . . . . . 6 (𝑦Q → (𝐵 <Q 𝑦 ↔ ∃𝑥(𝐵 +Q 𝑥) = 𝑦))
65biimpcd 249 . . . . 5 (𝐵 <Q 𝑦 → (𝑦Q → ∃𝑥(𝐵 +Q 𝑥) = 𝑦))
74, 6mpd 15 . . . 4 (𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) = 𝑦)
8 eleq1a 2839 . . . . 5 (𝑦𝐴 → ((𝐵 +Q 𝑥) = 𝑦 → (𝐵 +Q 𝑥) ∈ 𝐴))
98eximdv 1916 . . . 4 (𝑦𝐴 → (∃𝑥(𝐵 +Q 𝑥) = 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴))
107, 9syl5 34 . . 3 (𝑦𝐴 → (𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴))
1110rexlimiv 3154 . 2 (∃𝑦𝐴 𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)
121, 11syl 17 1 ((𝐴P𝐵𝐴) → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wrex 3076   class class class wbr 5166  (class class class)co 7448  Qcnq 10921   +Q cplq 10924   <Q cltq 10927  Pcnp 10928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-ni 10941  df-pli 10942  df-mi 10943  df-lti 10944  df-plpq 10977  df-mpq 10978  df-ltpq 10979  df-enq 10980  df-nq 10981  df-erq 10982  df-plq 10983  df-mq 10984  df-1nq 10985  df-ltnq 10987  df-np 11050
This theorem is referenced by:  ltexprlem1  11105  ltexprlem7  11111
  Copyright terms: Public domain W3C validator