MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnmadd Structured version   Visualization version   GIF version

Theorem prnmadd 11011
Description: A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prnmadd ((𝐴P𝐵𝐴) → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem prnmadd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prnmax 11009 . 2 ((𝐴P𝐵𝐴) → ∃𝑦𝐴 𝐵 <Q 𝑦)
2 ltrelnq 10940 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 5719 . . . . . 6 (𝐵 <Q 𝑦 → (𝐵Q𝑦Q))
43simprd 495 . . . . 5 (𝐵 <Q 𝑦𝑦Q)
5 ltexnq 10989 . . . . . 6 (𝑦Q → (𝐵 <Q 𝑦 ↔ ∃𝑥(𝐵 +Q 𝑥) = 𝑦))
65biimpcd 249 . . . . 5 (𝐵 <Q 𝑦 → (𝑦Q → ∃𝑥(𝐵 +Q 𝑥) = 𝑦))
74, 6mpd 15 . . . 4 (𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) = 𝑦)
8 eleq1a 2829 . . . . 5 (𝑦𝐴 → ((𝐵 +Q 𝑥) = 𝑦 → (𝐵 +Q 𝑥) ∈ 𝐴))
98eximdv 1917 . . . 4 (𝑦𝐴 → (∃𝑥(𝐵 +Q 𝑥) = 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴))
107, 9syl5 34 . . 3 (𝑦𝐴 → (𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴))
1110rexlimiv 3134 . 2 (∃𝑦𝐴 𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)
121, 11syl 17 1 ((𝐴P𝐵𝐴) → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3060   class class class wbr 5119  (class class class)co 7405  Qcnq 10866   +Q cplq 10869   <Q cltq 10872  Pcnp 10873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8719  df-ni 10886  df-pli 10887  df-mi 10888  df-lti 10889  df-plpq 10922  df-mpq 10923  df-ltpq 10924  df-enq 10925  df-nq 10926  df-erq 10927  df-plq 10928  df-mq 10929  df-1nq 10930  df-ltnq 10932  df-np 10995
This theorem is referenced by:  ltexprlem1  11050  ltexprlem7  11056
  Copyright terms: Public domain W3C validator