![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prnmadd | Structured version Visualization version GIF version |
Description: A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prnmadd | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnmax 11026 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝐵 <Q 𝑦) | |
2 | ltrelnq 10957 | . . . . . . 7 ⊢ <Q ⊆ (Q × Q) | |
3 | 2 | brel 5747 | . . . . . 6 ⊢ (𝐵 <Q 𝑦 → (𝐵 ∈ Q ∧ 𝑦 ∈ Q)) |
4 | 3 | simprd 494 | . . . . 5 ⊢ (𝐵 <Q 𝑦 → 𝑦 ∈ Q) |
5 | ltexnq 11006 | . . . . . 6 ⊢ (𝑦 ∈ Q → (𝐵 <Q 𝑦 ↔ ∃𝑥(𝐵 +Q 𝑥) = 𝑦)) | |
6 | 5 | biimpcd 248 | . . . . 5 ⊢ (𝐵 <Q 𝑦 → (𝑦 ∈ Q → ∃𝑥(𝐵 +Q 𝑥) = 𝑦)) |
7 | 4, 6 | mpd 15 | . . . 4 ⊢ (𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) = 𝑦) |
8 | eleq1a 2824 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ((𝐵 +Q 𝑥) = 𝑦 → (𝐵 +Q 𝑥) ∈ 𝐴)) | |
9 | 8 | eximdv 1912 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → (∃𝑥(𝐵 +Q 𝑥) = 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)) |
10 | 7, 9 | syl5 34 | . . 3 ⊢ (𝑦 ∈ 𝐴 → (𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)) |
11 | 10 | rexlimiv 3145 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴) |
12 | 1, 11 | syl 17 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∃wrex 3067 class class class wbr 5152 (class class class)co 7426 Qcnq 10883 +Q cplq 10886 <Q cltq 10889 Pcnp 10890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-oadd 8497 df-omul 8498 df-er 8731 df-ni 10903 df-pli 10904 df-mi 10905 df-lti 10906 df-plpq 10939 df-mpq 10940 df-ltpq 10941 df-enq 10942 df-nq 10943 df-erq 10944 df-plq 10945 df-mq 10946 df-1nq 10947 df-ltnq 10949 df-np 11012 |
This theorem is referenced by: ltexprlem1 11067 ltexprlem7 11073 |
Copyright terms: Public domain | W3C validator |