| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prnmadd | Structured version Visualization version GIF version | ||
| Description: A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prnmadd | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prnmax 11009 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝐵 <Q 𝑦) | |
| 2 | ltrelnq 10940 | . . . . . . 7 ⊢ <Q ⊆ (Q × Q) | |
| 3 | 2 | brel 5719 | . . . . . 6 ⊢ (𝐵 <Q 𝑦 → (𝐵 ∈ Q ∧ 𝑦 ∈ Q)) |
| 4 | 3 | simprd 495 | . . . . 5 ⊢ (𝐵 <Q 𝑦 → 𝑦 ∈ Q) |
| 5 | ltexnq 10989 | . . . . . 6 ⊢ (𝑦 ∈ Q → (𝐵 <Q 𝑦 ↔ ∃𝑥(𝐵 +Q 𝑥) = 𝑦)) | |
| 6 | 5 | biimpcd 249 | . . . . 5 ⊢ (𝐵 <Q 𝑦 → (𝑦 ∈ Q → ∃𝑥(𝐵 +Q 𝑥) = 𝑦)) |
| 7 | 4, 6 | mpd 15 | . . . 4 ⊢ (𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) = 𝑦) |
| 8 | eleq1a 2829 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ((𝐵 +Q 𝑥) = 𝑦 → (𝐵 +Q 𝑥) ∈ 𝐴)) | |
| 9 | 8 | eximdv 1917 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → (∃𝑥(𝐵 +Q 𝑥) = 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)) |
| 10 | 7, 9 | syl5 34 | . . 3 ⊢ (𝑦 ∈ 𝐴 → (𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)) |
| 11 | 10 | rexlimiv 3134 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴) |
| 12 | 1, 11 | syl 17 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 (class class class)co 7405 Qcnq 10866 +Q cplq 10869 <Q cltq 10872 Pcnp 10873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8719 df-ni 10886 df-pli 10887 df-mi 10888 df-lti 10889 df-plpq 10922 df-mpq 10923 df-ltpq 10924 df-enq 10925 df-nq 10926 df-erq 10927 df-plq 10928 df-mq 10929 df-1nq 10930 df-ltnq 10932 df-np 10995 |
| This theorem is referenced by: ltexprlem1 11050 ltexprlem7 11056 |
| Copyright terms: Public domain | W3C validator |