MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpv Structured version   Visualization version   GIF version

Theorem genpv 10887
Description: Value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpv ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)})
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧,𝑓,𝑔,   𝑓,𝐹,𝑔
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,)

Proof of Theorem genpv
StepHypRef Expression
1 oveq1 7353 . . . 4 (𝑓 = 𝐴 → (𝑓𝐹𝑔) = (𝐴𝐹𝑔))
2 rexeq 3288 . . . . 5 (𝑓 = 𝐴 → (∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)))
32abbidv 2797 . . . 4 (𝑓 = 𝐴 → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
41, 3eqeq12d 2747 . . 3 (𝑓 = 𝐴 → ((𝑓𝐹𝑔) = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ↔ (𝐴𝐹𝑔) = {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)}))
5 oveq2 7354 . . . 4 (𝑔 = 𝐵 → (𝐴𝐹𝑔) = (𝐴𝐹𝐵))
6 rexeq 3288 . . . . . 6 (𝑔 = 𝐵 → (∃𝑧𝑔 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑧𝐵 𝑥 = (𝑦𝐺𝑧)))
76rexbidv 3156 . . . . 5 (𝑔 = 𝐵 → (∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)))
87abbidv 2797 . . . 4 (𝑔 = 𝐵 → {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)})
95, 8eqeq12d 2747 . . 3 (𝑔 = 𝐵 → ((𝐴𝐹𝑔) = {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ↔ (𝐴𝐹𝐵) = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)}))
10 elprnq 10879 . . . . . . . . 9 ((𝑓P𝑦𝑓) → 𝑦Q)
11 elprnq 10879 . . . . . . . . 9 ((𝑔P𝑧𝑔) → 𝑧Q)
12 genp.2 . . . . . . . . . 10 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
13 eleq1 2819 . . . . . . . . . 10 (𝑥 = (𝑦𝐺𝑧) → (𝑥Q ↔ (𝑦𝐺𝑧) ∈ Q))
1412, 13syl5ibrcom 247 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1510, 11, 14syl2an 596 . . . . . . . 8 (((𝑓P𝑦𝑓) ∧ (𝑔P𝑧𝑔)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1615an4s 660 . . . . . . 7 (((𝑓P𝑔P) ∧ (𝑦𝑓𝑧𝑔)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1716rexlimdvva 3189 . . . . . 6 ((𝑓P𝑔P) → (∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1817abssdv 4019 . . . . 5 ((𝑓P𝑔P) → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ⊆ Q)
19 nqex 10811 . . . . 5 Q ∈ V
20 ssexg 5261 . . . . 5 (({𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ⊆ QQ ∈ V) → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ∈ V)
2118, 19, 20sylancl 586 . . . 4 ((𝑓P𝑔P) → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ∈ V)
22 rexeq 3288 . . . . . 6 (𝑤 = 𝑓 → (∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧)))
2322abbidv 2797 . . . . 5 (𝑤 = 𝑓 → {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
24 rexeq 3288 . . . . . . 7 (𝑣 = 𝑔 → (∃𝑧𝑣 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑧𝑔 𝑥 = (𝑦𝐺𝑧)))
2524rexbidv 3156 . . . . . 6 (𝑣 = 𝑔 → (∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)))
2625abbidv 2797 . . . . 5 (𝑣 = 𝑔 → {𝑥 ∣ ∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
27 genp.1 . . . . 5 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2823, 26, 27ovmpog 7505 . . . 4 ((𝑓P𝑔P ∧ {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ∈ V) → (𝑓𝐹𝑔) = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
2921, 28mpd3an3 1464 . . 3 ((𝑓P𝑔P) → (𝑓𝐹𝑔) = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
304, 9, 29vtocl2ga 3533 . 2 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)})
31 eqeq1 2735 . . . . 5 (𝑥 = 𝑓 → (𝑥 = (𝑦𝐺𝑧) ↔ 𝑓 = (𝑦𝐺𝑧)))
32312rexbidv 3197 . . . 4 (𝑥 = 𝑓 → (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝐴𝑧𝐵 𝑓 = (𝑦𝐺𝑧)))
33 oveq1 7353 . . . . . 6 (𝑦 = 𝑔 → (𝑦𝐺𝑧) = (𝑔𝐺𝑧))
3433eqeq2d 2742 . . . . 5 (𝑦 = 𝑔 → (𝑓 = (𝑦𝐺𝑧) ↔ 𝑓 = (𝑔𝐺𝑧)))
35 oveq2 7354 . . . . . 6 (𝑧 = → (𝑔𝐺𝑧) = (𝑔𝐺))
3635eqeq2d 2742 . . . . 5 (𝑧 = → (𝑓 = (𝑔𝐺𝑧) ↔ 𝑓 = (𝑔𝐺)))
3734, 36cbvrex2vw 3215 . . . 4 (∃𝑦𝐴𝑧𝐵 𝑓 = (𝑦𝐺𝑧) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺))
3832, 37bitrdi 287 . . 3 (𝑥 = 𝑓 → (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)))
3938cbvabv 2801 . 2 {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)} = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)}
4030, 39eqtrdi 2782 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  wss 3902  (class class class)co 7346  cmpo 7348  Qcnq 10740  Pcnp 10747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-ni 10760  df-nq 10800  df-np 10869
This theorem is referenced by:  genpelv  10888  plpv  10898  mpv  10899
  Copyright terms: Public domain W3C validator