MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpv Structured version   Visualization version   GIF version

Theorem genpv 10756
Description: Value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpv ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)})
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧,𝑓,𝑔,   𝑓,𝐹,𝑔
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,)

Proof of Theorem genpv
StepHypRef Expression
1 oveq1 7278 . . . 4 (𝑓 = 𝐴 → (𝑓𝐹𝑔) = (𝐴𝐹𝑔))
2 rexeq 3342 . . . . 5 (𝑓 = 𝐴 → (∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)))
32abbidv 2809 . . . 4 (𝑓 = 𝐴 → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
41, 3eqeq12d 2756 . . 3 (𝑓 = 𝐴 → ((𝑓𝐹𝑔) = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ↔ (𝐴𝐹𝑔) = {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)}))
5 oveq2 7279 . . . 4 (𝑔 = 𝐵 → (𝐴𝐹𝑔) = (𝐴𝐹𝐵))
6 rexeq 3342 . . . . . 6 (𝑔 = 𝐵 → (∃𝑧𝑔 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑧𝐵 𝑥 = (𝑦𝐺𝑧)))
76rexbidv 3228 . . . . 5 (𝑔 = 𝐵 → (∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)))
87abbidv 2809 . . . 4 (𝑔 = 𝐵 → {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)})
95, 8eqeq12d 2756 . . 3 (𝑔 = 𝐵 → ((𝐴𝐹𝑔) = {𝑥 ∣ ∃𝑦𝐴𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ↔ (𝐴𝐹𝐵) = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)}))
10 elprnq 10748 . . . . . . . . 9 ((𝑓P𝑦𝑓) → 𝑦Q)
11 elprnq 10748 . . . . . . . . 9 ((𝑔P𝑧𝑔) → 𝑧Q)
12 genp.2 . . . . . . . . . 10 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
13 eleq1 2828 . . . . . . . . . 10 (𝑥 = (𝑦𝐺𝑧) → (𝑥Q ↔ (𝑦𝐺𝑧) ∈ Q))
1412, 13syl5ibrcom 246 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1510, 11, 14syl2an 596 . . . . . . . 8 (((𝑓P𝑦𝑓) ∧ (𝑔P𝑧𝑔)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1615an4s 657 . . . . . . 7 (((𝑓P𝑔P) ∧ (𝑦𝑓𝑧𝑔)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1716rexlimdvva 3225 . . . . . 6 ((𝑓P𝑔P) → (∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
1817abssdv 4007 . . . . 5 ((𝑓P𝑔P) → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ⊆ Q)
19 nqex 10680 . . . . 5 Q ∈ V
20 ssexg 5251 . . . . 5 (({𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ⊆ QQ ∈ V) → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ∈ V)
2118, 19, 20sylancl 586 . . . 4 ((𝑓P𝑔P) → {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ∈ V)
22 rexeq 3342 . . . . . 6 (𝑤 = 𝑓 → (∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧)))
2322abbidv 2809 . . . . 5 (𝑤 = 𝑓 → {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
24 rexeq 3342 . . . . . . 7 (𝑣 = 𝑔 → (∃𝑧𝑣 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑧𝑔 𝑥 = (𝑦𝐺𝑧)))
2524rexbidv 3228 . . . . . 6 (𝑣 = 𝑔 → (∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)))
2625abbidv 2809 . . . . 5 (𝑣 = 𝑔 → {𝑥 ∣ ∃𝑦𝑓𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
27 genp.1 . . . . 5 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2823, 26, 27ovmpog 7426 . . . 4 ((𝑓P𝑔P ∧ {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)} ∈ V) → (𝑓𝐹𝑔) = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
2921, 28mpd3an3 1461 . . 3 ((𝑓P𝑔P) → (𝑓𝐹𝑔) = {𝑥 ∣ ∃𝑦𝑓𝑧𝑔 𝑥 = (𝑦𝐺𝑧)})
304, 9, 29vtocl2ga 3513 . 2 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)})
31 eqeq1 2744 . . . . 5 (𝑥 = 𝑓 → (𝑥 = (𝑦𝐺𝑧) ↔ 𝑓 = (𝑦𝐺𝑧)))
32312rexbidv 3231 . . . 4 (𝑥 = 𝑓 → (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑦𝐴𝑧𝐵 𝑓 = (𝑦𝐺𝑧)))
33 oveq1 7278 . . . . . 6 (𝑦 = 𝑔 → (𝑦𝐺𝑧) = (𝑔𝐺𝑧))
3433eqeq2d 2751 . . . . 5 (𝑦 = 𝑔 → (𝑓 = (𝑦𝐺𝑧) ↔ 𝑓 = (𝑔𝐺𝑧)))
35 oveq2 7279 . . . . . 6 (𝑧 = → (𝑔𝐺𝑧) = (𝑔𝐺))
3635eqeq2d 2751 . . . . 5 (𝑧 = → (𝑓 = (𝑔𝐺𝑧) ↔ 𝑓 = (𝑔𝐺)))
3734, 36cbvrex2vw 3395 . . . 4 (∃𝑦𝐴𝑧𝐵 𝑓 = (𝑦𝐺𝑧) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺))
3832, 37bitrdi 287 . . 3 (𝑥 = 𝑓 → (∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)))
3938cbvabv 2813 . 2 {𝑥 ∣ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦𝐺𝑧)} = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)}
4030, 39eqtrdi 2796 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  {cab 2717  wrex 3067  Vcvv 3431  wss 3892  (class class class)co 7271  cmpo 7273  Qcnq 10609  Pcnp 10616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-ni 10629  df-nq 10669  df-np 10738
This theorem is referenced by:  genpelv  10757  plpv  10767  mpv  10768
  Copyright terms: Public domain W3C validator