Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltexpri | Structured version Visualization version GIF version |
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltexpri | ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelpr 10754 | . . 3 ⊢ <P ⊆ (P × P) | |
2 | 1 | brel 5652 | . 2 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
3 | ltprord 10786 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ 𝐴 ⊊ 𝐵)) | |
4 | oveq2 7283 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝑧 → (𝑤 +Q 𝑦) = (𝑤 +Q 𝑧)) | |
5 | 4 | eleq1d 2823 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑧 → ((𝑤 +Q 𝑦) ∈ 𝐵 ↔ (𝑤 +Q 𝑧) ∈ 𝐵)) |
6 | 5 | anbi2d 629 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → ((¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ (¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵))) |
7 | 6 | exbidv 1924 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵))) |
8 | 7 | cbvabv 2811 | . . . . . . 7 ⊢ {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} = {𝑧 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)} |
9 | 8 | ltexprlem5 10796 | . . . . . 6 ⊢ ((𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵) → {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P) |
10 | 9 | adantll 711 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P) |
11 | 8 | ltexprlem6 10797 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) ⊆ 𝐵) |
12 | 8 | ltexprlem7 10798 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → 𝐵 ⊆ (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)})) |
13 | 11, 12 | eqssd 3938 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵) |
14 | oveq2 7283 | . . . . . . 7 ⊢ (𝑥 = {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → (𝐴 +P 𝑥) = (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)})) | |
15 | 14 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑥 = {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵)) |
16 | 15 | rspcev 3561 | . . . . 5 ⊢ (({𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P ∧ (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵) → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
17 | 10, 13, 16 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
18 | 17 | ex 413 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ⊊ 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵)) |
19 | 3, 18 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵)) |
20 | 2, 19 | mpcom 38 | 1 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∃wrex 3065 ⊊ wpss 3888 class class class wbr 5074 (class class class)co 7275 +Q cplq 10611 Pcnp 10615 +P cpp 10617 <P cltp 10619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-omul 8302 df-er 8498 df-ni 10628 df-pli 10629 df-mi 10630 df-lti 10631 df-plpq 10664 df-mpq 10665 df-ltpq 10666 df-enq 10667 df-nq 10668 df-erq 10669 df-plq 10670 df-mq 10671 df-1nq 10672 df-rq 10673 df-ltnq 10674 df-np 10737 df-plp 10739 df-ltp 10741 |
This theorem is referenced by: ltaprlem 10800 recexsrlem 10859 mulgt0sr 10861 map2psrpr 10866 |
Copyright terms: Public domain | W3C validator |