MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexpri Structured version   Visualization version   GIF version

Theorem ltexpri 11037
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexpri (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexpri
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 10992 . . 3 <P ⊆ (P × P)
21brel 5741 . 2 (𝐴<P 𝐵 → (𝐴P𝐵P))
3 ltprord 11024 . . 3 ((𝐴P𝐵P) → (𝐴<P 𝐵𝐴𝐵))
4 oveq2 7416 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑤 +Q 𝑦) = (𝑤 +Q 𝑧))
54eleq1d 2818 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑤 +Q 𝑦) ∈ 𝐵 ↔ (𝑤 +Q 𝑧) ∈ 𝐵))
65anbi2d 629 . . . . . . . . 9 (𝑦 = 𝑧 → ((¬ 𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ (¬ 𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)))
76exbidv 1924 . . . . . . . 8 (𝑦 = 𝑧 → (∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)))
87cbvabv 2805 . . . . . . 7 {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} = {𝑧 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)}
98ltexprlem5 11034 . . . . . 6 ((𝐵P𝐴𝐵) → {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P)
109adantll 712 . . . . 5 (((𝐴P𝐵P) ∧ 𝐴𝐵) → {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P)
118ltexprlem6 11035 . . . . . 6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) ⊆ 𝐵)
128ltexprlem7 11036 . . . . . 6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}))
1311, 12eqssd 3999 . . . . 5 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵)
14 oveq2 7416 . . . . . . 7 (𝑥 = {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → (𝐴 +P 𝑥) = (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}))
1514eqeq1d 2734 . . . . . 6 (𝑥 = {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵))
1615rspcev 3612 . . . . 5 (({𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P ∧ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
1710, 13, 16syl2anc 584 . . . 4 (((𝐴P𝐵P) ∧ 𝐴𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
1817ex 413 . . 3 ((𝐴P𝐵P) → (𝐴𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵))
193, 18sylbid 239 . 2 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵))
202, 19mpcom 38 1 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wrex 3070  wpss 3949   class class class wbr 5148  (class class class)co 7408   +Q cplq 10849  Pcnp 10853   +P cpp 10855  <P cltp 10857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-oadd 8469  df-omul 8470  df-er 8702  df-ni 10866  df-pli 10867  df-mi 10868  df-lti 10869  df-plpq 10902  df-mpq 10903  df-ltpq 10904  df-enq 10905  df-nq 10906  df-erq 10907  df-plq 10908  df-mq 10909  df-1nq 10910  df-rq 10911  df-ltnq 10912  df-np 10975  df-plp 10977  df-ltp 10979
This theorem is referenced by:  ltaprlem  11038  recexsrlem  11097  mulgt0sr  11099  map2psrpr  11104
  Copyright terms: Public domain W3C validator