![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltexpri | Structured version Visualization version GIF version |
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltexpri | ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelpr 10992 | . . 3 ⊢ <P ⊆ (P × P) | |
2 | 1 | brel 5734 | . 2 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
3 | ltprord 11024 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ 𝐴 ⊊ 𝐵)) | |
4 | oveq2 7412 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝑧 → (𝑤 +Q 𝑦) = (𝑤 +Q 𝑧)) | |
5 | 4 | eleq1d 2812 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑧 → ((𝑤 +Q 𝑦) ∈ 𝐵 ↔ (𝑤 +Q 𝑧) ∈ 𝐵)) |
6 | 5 | anbi2d 628 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → ((¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ (¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵))) |
7 | 6 | exbidv 1916 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵))) |
8 | 7 | cbvabv 2799 | . . . . . . 7 ⊢ {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} = {𝑧 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)} |
9 | 8 | ltexprlem5 11034 | . . . . . 6 ⊢ ((𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵) → {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P) |
10 | 9 | adantll 711 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P) |
11 | 8 | ltexprlem6 11035 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) ⊆ 𝐵) |
12 | 8 | ltexprlem7 11036 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → 𝐵 ⊆ (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)})) |
13 | 11, 12 | eqssd 3994 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵) |
14 | oveq2 7412 | . . . . . . 7 ⊢ (𝑥 = {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → (𝐴 +P 𝑥) = (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)})) | |
15 | 14 | eqeq1d 2728 | . . . . . 6 ⊢ (𝑥 = {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵)) |
16 | 15 | rspcev 3606 | . . . . 5 ⊢ (({𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P ∧ (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵) → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
17 | 10, 13, 16 | syl2anc 583 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
18 | 17 | ex 412 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ⊊ 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵)) |
19 | 3, 18 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵)) |
20 | 2, 19 | mpcom 38 | 1 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2703 ∃wrex 3064 ⊊ wpss 3944 class class class wbr 5141 (class class class)co 7404 +Q cplq 10849 Pcnp 10853 +P cpp 10855 <P cltp 10857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-oadd 8468 df-omul 8469 df-er 8702 df-ni 10866 df-pli 10867 df-mi 10868 df-lti 10869 df-plpq 10902 df-mpq 10903 df-ltpq 10904 df-enq 10905 df-nq 10906 df-erq 10907 df-plq 10908 df-mq 10909 df-1nq 10910 df-rq 10911 df-ltnq 10912 df-np 10975 df-plp 10977 df-ltp 10979 |
This theorem is referenced by: ltaprlem 11038 recexsrlem 11097 mulgt0sr 11099 map2psrpr 11104 |
Copyright terms: Public domain | W3C validator |