Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltexpri | Structured version Visualization version GIF version |
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltexpri | ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelpr 10765 | . . 3 ⊢ <P ⊆ (P × P) | |
2 | 1 | brel 5653 | . 2 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
3 | ltprord 10797 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ 𝐴 ⊊ 𝐵)) | |
4 | oveq2 7280 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝑧 → (𝑤 +Q 𝑦) = (𝑤 +Q 𝑧)) | |
5 | 4 | eleq1d 2825 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑧 → ((𝑤 +Q 𝑦) ∈ 𝐵 ↔ (𝑤 +Q 𝑧) ∈ 𝐵)) |
6 | 5 | anbi2d 629 | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → ((¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ (¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵))) |
7 | 6 | exbidv 1928 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵))) |
8 | 7 | cbvabv 2813 | . . . . . . 7 ⊢ {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} = {𝑧 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)} |
9 | 8 | ltexprlem5 10807 | . . . . . 6 ⊢ ((𝐵 ∈ P ∧ 𝐴 ⊊ 𝐵) → {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P) |
10 | 9 | adantll 711 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P) |
11 | 8 | ltexprlem6 10808 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) ⊆ 𝐵) |
12 | 8 | ltexprlem7 10809 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → 𝐵 ⊆ (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)})) |
13 | 11, 12 | eqssd 3943 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵) |
14 | oveq2 7280 | . . . . . . 7 ⊢ (𝑥 = {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → (𝐴 +P 𝑥) = (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)})) | |
15 | 14 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑥 = {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵)) |
16 | 15 | rspcev 3561 | . . . . 5 ⊢ (({𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P ∧ (𝐴 +P {𝑦 ∣ ∃𝑤(¬ 𝑤 ∈ 𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵) → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
17 | 10, 13, 16 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ 𝐴 ⊊ 𝐵) → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
18 | 17 | ex 413 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ⊊ 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵)) |
19 | 3, 18 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵)) |
20 | 2, 19 | mpcom 38 | 1 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1542 ∃wex 1786 ∈ wcel 2110 {cab 2717 ∃wrex 3067 ⊊ wpss 3893 class class class wbr 5079 (class class class)co 7272 +Q cplq 10622 Pcnp 10626 +P cpp 10628 <P cltp 10630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-inf2 9387 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-1st 7825 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-oadd 8293 df-omul 8294 df-er 8490 df-ni 10639 df-pli 10640 df-mi 10641 df-lti 10642 df-plpq 10675 df-mpq 10676 df-ltpq 10677 df-enq 10678 df-nq 10679 df-erq 10680 df-plq 10681 df-mq 10682 df-1nq 10683 df-rq 10684 df-ltnq 10685 df-np 10748 df-plp 10750 df-ltp 10752 |
This theorem is referenced by: ltaprlem 10811 recexsrlem 10870 mulgt0sr 10872 map2psrpr 10877 |
Copyright terms: Public domain | W3C validator |