MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexpri Structured version   Visualization version   GIF version

Theorem ltexpri 11083
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexpri (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexpri
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 11038 . . 3 <P ⊆ (P × P)
21brel 5750 . 2 (𝐴<P 𝐵 → (𝐴P𝐵P))
3 ltprord 11070 . . 3 ((𝐴P𝐵P) → (𝐴<P 𝐵𝐴𝐵))
4 oveq2 7439 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑤 +Q 𝑦) = (𝑤 +Q 𝑧))
54eleq1d 2826 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑤 +Q 𝑦) ∈ 𝐵 ↔ (𝑤 +Q 𝑧) ∈ 𝐵))
65anbi2d 630 . . . . . . . . 9 (𝑦 = 𝑧 → ((¬ 𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ (¬ 𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)))
76exbidv 1921 . . . . . . . 8 (𝑦 = 𝑧 → (∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)))
87cbvabv 2812 . . . . . . 7 {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} = {𝑧 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)}
98ltexprlem5 11080 . . . . . 6 ((𝐵P𝐴𝐵) → {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P)
109adantll 714 . . . . 5 (((𝐴P𝐵P) ∧ 𝐴𝐵) → {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P)
118ltexprlem6 11081 . . . . . 6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) ⊆ 𝐵)
128ltexprlem7 11082 . . . . . 6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}))
1311, 12eqssd 4001 . . . . 5 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵)
14 oveq2 7439 . . . . . . 7 (𝑥 = {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → (𝐴 +P 𝑥) = (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}))
1514eqeq1d 2739 . . . . . 6 (𝑥 = {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵))
1615rspcev 3622 . . . . 5 (({𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P ∧ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
1710, 13, 16syl2anc 584 . . . 4 (((𝐴P𝐵P) ∧ 𝐴𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
1817ex 412 . . 3 ((𝐴P𝐵P) → (𝐴𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵))
193, 18sylbid 240 . 2 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵))
202, 19mpcom 38 1 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  {cab 2714  wrex 3070  wpss 3952   class class class wbr 5143  (class class class)co 7431   +Q cplq 10895  Pcnp 10899   +P cpp 10901  <P cltp 10903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-ni 10912  df-pli 10913  df-mi 10914  df-lti 10915  df-plpq 10948  df-mpq 10949  df-ltpq 10950  df-enq 10951  df-nq 10952  df-erq 10953  df-plq 10954  df-mq 10955  df-1nq 10956  df-rq 10957  df-ltnq 10958  df-np 11021  df-plp 11023  df-ltp 11025
This theorem is referenced by:  ltaprlem  11084  recexsrlem  11143  mulgt0sr  11145  map2psrpr  11150
  Copyright terms: Public domain W3C validator