| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsslvec | Structured version Visualization version GIF version | ||
| Description: A vector subspace is a vector space. (Contributed by NM, 14-Mar-2015.) |
| Ref | Expression |
|---|---|
| lsslvec.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| lsslvec.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lsslvec | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lveclmod 21064 | . . 3 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 2 | lsslvec.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 3 | lsslvec.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | 2, 3 | lsslmod 20917 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LMod) |
| 5 | 1, 4 | sylan 580 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LMod) |
| 6 | eqid 2735 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 7 | 2, 6 | resssca 17357 | . . . 4 ⊢ (𝑈 ∈ 𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋)) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑊) = (Scalar‘𝑋)) |
| 9 | 6 | lvecdrng 21063 | . . . 4 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing) |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑊) ∈ DivRing) |
| 11 | 8, 10 | eqeltrrd 2835 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑋) ∈ DivRing) |
| 12 | eqid 2735 | . . 3 ⊢ (Scalar‘𝑋) = (Scalar‘𝑋) | |
| 13 | 12 | islvec 21062 | . 2 ⊢ (𝑋 ∈ LVec ↔ (𝑋 ∈ LMod ∧ (Scalar‘𝑋) ∈ DivRing)) |
| 14 | 5, 11, 13 | sylanbrc 583 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 ↾s cress 17251 Scalarcsca 17274 DivRingcdr 20689 LModclmod 20817 LSubSpclss 20888 LVecclvec 21060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-sca 17287 df-vsca 17288 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-mgp 20101 df-ur 20142 df-ring 20195 df-lmod 20819 df-lss 20889 df-lvec 21061 |
| This theorem is referenced by: phlssphl 21619 lssdimle 33647 lbslsat 33656 lsatdim 33657 kerlmhm 33660 imlmhm 33661 ply1degltdimlem 33662 ply1degltdim 33663 dimlssid 33672 lvecendof1f1o 33673 algextdeglem8 33758 lcdlvec 41610 |
| Copyright terms: Public domain | W3C validator |