MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgm0 Structured version   Visualization version   GIF version

Theorem mgm0 18589
Description: Any set with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021.)
Assertion
Ref Expression
mgm0 ((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Mgm)

Proof of Theorem mgm0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rzal 4474 . . 3 ((Base‘𝑀) = ∅ → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
21adantl 481 . 2 ((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀))
3 eqid 2730 . . . 4 (Base‘𝑀) = (Base‘𝑀)
4 eqid 2730 . . . 4 (+g𝑀) = (+g𝑀)
53, 4ismgm 18574 . . 3 (𝑀𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
65adantr 480 . 2 ((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g𝑀)𝑦) ∈ (Base‘𝑀)))
72, 6mpbird 257 1 ((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  c0 4298  cfv 6513  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  Mgmcmgm 18571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392  df-mgm 18573
This theorem is referenced by:  mgm0b  18590  sgrp0  18660
  Copyright terms: Public domain W3C validator