![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgm0 | Structured version Visualization version GIF version |
Description: Any set with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021.) |
Ref | Expression |
---|---|
mgm0 | ⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rzal 4295 | . . 3 ⊢ ((Base‘𝑀) = ∅ → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) | |
2 | 1 | adantl 475 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀)) |
3 | eqid 2825 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
4 | eqid 2825 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
5 | 3, 4 | ismgm 17596 | . . 3 ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) |
6 | 5 | adantr 474 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)(𝑥(+g‘𝑀)𝑦) ∈ (Base‘𝑀))) |
7 | 2, 6 | mpbird 249 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∀wral 3117 ∅c0 4144 ‘cfv 6123 (class class class)co 6905 Basecbs 16222 +gcplusg 16305 Mgmcmgm 17593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-nul 5013 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-iota 6086 df-fv 6131 df-ov 6908 df-mgm 17595 |
This theorem is referenced by: mgm0b 17609 sgrp0 17644 |
Copyright terms: Public domain | W3C validator |