| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgmb1mgm1 | Structured version Visualization version GIF version | ||
| Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.) |
| Ref | Expression |
|---|---|
| mgmb1mgm1.b | ⊢ 𝐵 = (Base‘𝑀) |
| mgmb1mgm1.p | ⊢ + = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| mgmb1mgm1 | ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmb1mgm1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | mgmb1mgm1.p | . . . . . 6 ⊢ + = (+g‘𝑀) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (+𝑓‘𝑀) = (+𝑓‘𝑀) | |
| 4 | 1, 2, 3 | plusfeq 18575 | . . . . 5 ⊢ ( + Fn (𝐵 × 𝐵) → (+𝑓‘𝑀) = + ) |
| 5 | 1, 3 | mgmplusf 18577 | . . . . . 6 ⊢ (𝑀 ∈ Mgm → (+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵) |
| 6 | feq1 6666 | . . . . . 6 ⊢ ((+𝑓‘𝑀) = + → ((+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵 ↔ + :(𝐵 × 𝐵)⟶𝐵)) | |
| 7 | 5, 6 | imbitrid 244 | . . . . 5 ⊢ ((+𝑓‘𝑀) = + → (𝑀 ∈ Mgm → + :(𝐵 × 𝐵)⟶𝐵)) |
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ ( + Fn (𝐵 × 𝐵) → (𝑀 ∈ Mgm → + :(𝐵 × 𝐵)⟶𝐵)) |
| 9 | 8 | impcom 407 | . . 3 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵) |
| 10 | 9 | 3adant2 1131 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵) |
| 11 | simp2 1137 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → 𝑍 ∈ 𝐵) | |
| 12 | intopsn 18581 | . 2 ⊢ (( + :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) | |
| 13 | 10, 11, 12 | syl2anc 584 | 1 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {csn 4589 〈cop 4595 × cxp 5636 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 Basecbs 17179 +gcplusg 17220 +𝑓cplusf 18564 Mgmcmgm 18565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-plusf 18566 df-mgm 18567 |
| This theorem is referenced by: srg1zr 20124 |
| Copyright terms: Public domain | W3C validator |