MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmb1mgm1 Structured version   Visualization version   GIF version

Theorem mgmb1mgm1 17651
Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.)
Hypotheses
Ref Expression
mgmb1mgm1.b 𝐵 = (Base‘𝑀)
mgmb1mgm1.p + = (+g𝑀)
Assertion
Ref Expression
mgmb1mgm1 ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))

Proof of Theorem mgmb1mgm1
StepHypRef Expression
1 mgmb1mgm1.b . . . . . 6 𝐵 = (Base‘𝑀)
2 mgmb1mgm1.p . . . . . 6 + = (+g𝑀)
3 eqid 2778 . . . . . 6 (+𝑓𝑀) = (+𝑓𝑀)
41, 2, 3plusfeq 17646 . . . . 5 ( + Fn (𝐵 × 𝐵) → (+𝑓𝑀) = + )
51, 3mgmplusf 17648 . . . . . 6 (𝑀 ∈ Mgm → (+𝑓𝑀):(𝐵 × 𝐵)⟶𝐵)
6 feq1 6274 . . . . . 6 ((+𝑓𝑀) = + → ((+𝑓𝑀):(𝐵 × 𝐵)⟶𝐵+ :(𝐵 × 𝐵)⟶𝐵))
75, 6syl5ib 236 . . . . 5 ((+𝑓𝑀) = + → (𝑀 ∈ Mgm → + :(𝐵 × 𝐵)⟶𝐵))
84, 7syl 17 . . . 4 ( + Fn (𝐵 × 𝐵) → (𝑀 ∈ Mgm → + :(𝐵 × 𝐵)⟶𝐵))
98impcom 398 . . 3 ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵)
1093adant2 1122 . 2 ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵)
11 simp2 1128 . 2 ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → 𝑍𝐵)
12 intopsn 17650 . 2 (( + :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
1310, 11, 12syl2anc 579 1 ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1071   = wceq 1601  wcel 2107  {csn 4398  cop 4404   × cxp 5355   Fn wfn 6132  wf 6133  cfv 6137  Basecbs 16266  +gcplusg 16349  +𝑓cplusf 17636  Mgmcmgm 17637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-plusf 17638  df-mgm 17639
This theorem is referenced by:  srg1zr  18927
  Copyright terms: Public domain W3C validator