Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mgmb1mgm1 | Structured version Visualization version GIF version |
Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.) |
Ref | Expression |
---|---|
mgmb1mgm1.b | ⊢ 𝐵 = (Base‘𝑀) |
mgmb1mgm1.p | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
mgmb1mgm1 | ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmb1mgm1.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
2 | mgmb1mgm1.p | . . . . . 6 ⊢ + = (+g‘𝑀) | |
3 | eqid 2738 | . . . . . 6 ⊢ (+𝑓‘𝑀) = (+𝑓‘𝑀) | |
4 | 1, 2, 3 | plusfeq 18249 | . . . . 5 ⊢ ( + Fn (𝐵 × 𝐵) → (+𝑓‘𝑀) = + ) |
5 | 1, 3 | mgmplusf 18251 | . . . . . 6 ⊢ (𝑀 ∈ Mgm → (+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵) |
6 | feq1 6565 | . . . . . 6 ⊢ ((+𝑓‘𝑀) = + → ((+𝑓‘𝑀):(𝐵 × 𝐵)⟶𝐵 ↔ + :(𝐵 × 𝐵)⟶𝐵)) | |
7 | 5, 6 | syl5ib 243 | . . . . 5 ⊢ ((+𝑓‘𝑀) = + → (𝑀 ∈ Mgm → + :(𝐵 × 𝐵)⟶𝐵)) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ ( + Fn (𝐵 × 𝐵) → (𝑀 ∈ Mgm → + :(𝐵 × 𝐵)⟶𝐵)) |
9 | 8 | impcom 407 | . . 3 ⊢ ((𝑀 ∈ Mgm ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵) |
10 | 9 | 3adant2 1129 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)⟶𝐵) |
11 | simp2 1135 | . 2 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → 𝑍 ∈ 𝐵) | |
12 | intopsn 18253 | . 2 ⊢ (( + :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) | |
13 | 10, 11, 12 | syl2anc 583 | 1 ⊢ ((𝑀 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {csn 4558 〈cop 4564 × cxp 5578 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 Basecbs 16840 +gcplusg 16888 +𝑓cplusf 18238 Mgmcmgm 18239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-plusf 18240 df-mgm 18241 |
This theorem is referenced by: srg1zr 19680 |
Copyright terms: Public domain | W3C validator |