![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgrp0 | Structured version Visualization version GIF version |
Description: Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.) |
Ref | Expression |
---|---|
sgrp0 | ⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ SGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgm0 17609 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Mgm) | |
2 | rzal 4296 | . . 3 ⊢ ((Base‘𝑀) = ∅ → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))) | |
3 | 2 | adantl 475 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))) |
4 | eqid 2826 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
5 | eqid 2826 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
6 | 4, 5 | issgrp 17639 | . 2 ⊢ (𝑀 ∈ SGrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) |
7 | 1, 3, 6 | sylanbrc 580 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ SGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∀wral 3118 ∅c0 4145 ‘cfv 6124 (class class class)co 6906 Basecbs 16223 +gcplusg 16306 Mgmcmgm 17594 SGrpcsgrp 17637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-nul 5014 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-sbc 3664 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-iota 6087 df-fv 6132 df-ov 6909 df-mgm 17596 df-sgrp 17638 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |