![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgrp0 | Structured version Visualization version GIF version |
Description: Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.) |
Ref | Expression |
---|---|
sgrp0 | ⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Smgrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgm0 18583 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Mgm) | |
2 | rzal 4509 | . . 3 ⊢ ((Base‘𝑀) = ∅ → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))) | |
3 | 2 | adantl 480 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))) |
4 | eqid 2730 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
5 | eqid 2730 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
6 | 4, 5 | issgrp 18647 | . 2 ⊢ (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) |
7 | 1, 3, 6 | sylanbrc 581 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Smgrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∅c0 4323 ‘cfv 6544 (class class class)co 7413 Basecbs 17150 +gcplusg 17203 Mgmcmgm 18565 Smgrpcsgrp 18645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rab 3431 df-v 3474 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7416 df-mgm 18567 df-sgrp 18646 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |