MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moabexOLD Structured version   Visualization version   GIF version

Theorem moabexOLD 5404
Description: Obsolete version of moabex 5403 as of 2-Feb-2026. (Contributed by NM, 30-Dec-1996.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
moabexOLD (∃*𝑥𝜑 → {𝑥𝜑} ∈ V)

Proof of Theorem moabexOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mo 2537 . 2 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 abss 4012 . . . . 5 ({𝑥𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑𝑥 ∈ {𝑦}))
3 velsn 4593 . . . . . . 7 (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦)
43imbi2i 336 . . . . . 6 ((𝜑𝑥 ∈ {𝑦}) ↔ (𝜑𝑥 = 𝑦))
54albii 1820 . . . . 5 (∀𝑥(𝜑𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑𝑥 = 𝑦))
62, 5bitri 275 . . . 4 ({𝑥𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
7 vsnex 5376 . . . . 5 {𝑦} ∈ V
87ssex 5263 . . . 4 ({𝑥𝜑} ⊆ {𝑦} → {𝑥𝜑} ∈ V)
96, 8sylbir 235 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} ∈ V)
109exlimiv 1931 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} ∈ V)
111, 10sylbi 217 1 (∃*𝑥𝜑 → {𝑥𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wex 1780  wcel 2113  ∃*wmo 2535  {cab 2711  Vcvv 3438  wss 3899  {csn 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-rab 3398  df-v 3440  df-un 3904  df-in 3906  df-ss 3916  df-sn 4578  df-pr 4580
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator