MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem1 Structured version   Visualization version   GIF version

Theorem voliunlem1 25066
Description: Lemma for voliun 25070. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (𝜑𝐹:ℕ⟶dom vol)
voliunlem.5 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
voliunlem1.6 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐸 ∩ (𝐹𝑛))))
voliunlem1.7 (𝜑𝐸 ⊆ ℝ)
voliunlem1.8 (𝜑 → (vol*‘𝐸) ∈ ℝ)
Assertion
Ref Expression
voliunlem1 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ran 𝐹))) ≤ (vol*‘𝐸))
Distinct variable groups:   𝑘,𝑛,𝐸   𝑖,𝑘,𝑛,𝐹   𝑘,𝐻   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑖)   𝐸(𝑖)   𝐻(𝑖,𝑛)

Proof of Theorem voliunlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 difss 4131 . . . 4 (𝐸 ran 𝐹) ⊆ 𝐸
2 voliunlem1.7 . . . 4 (𝜑𝐸 ⊆ ℝ)
3 voliunlem1.8 . . . . 5 (𝜑 → (vol*‘𝐸) ∈ ℝ)
43adantr 481 . . . 4 ((𝜑𝑘 ∈ ℕ) → (vol*‘𝐸) ∈ ℝ)
5 ovolsscl 25002 . . . 4 (((𝐸 ran 𝐹) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 ran 𝐹)) ∈ ℝ)
61, 2, 4, 5mp3an2ani 1468 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ran 𝐹)) ∈ ℝ)
7 difss 4131 . . . 4 (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸
8 ovolsscl 25002 . . . 4 (((𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
97, 2, 4, 8mp3an2ani 1468 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
10 inss1 4228 . . . 4 (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸
11 ovolsscl 25002 . . . 4 (((𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
1210, 2, 4, 11mp3an2ani 1468 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
13 elfznn 13529 . . . . . . . . 9 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
14 voliunlem.3 . . . . . . . . . . . 12 (𝜑𝐹:ℕ⟶dom vol)
1514ffnd 6718 . . . . . . . . . . 11 (𝜑𝐹 Fn ℕ)
16 fnfvelrn 7082 . . . . . . . . . . 11 ((𝐹 Fn ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
1715, 16sylan 580 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
18 elssuni 4941 . . . . . . . . . 10 ((𝐹𝑛) ∈ ran 𝐹 → (𝐹𝑛) ⊆ ran 𝐹)
1917, 18syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ran 𝐹)
2013, 19sylan2 593 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑘)) → (𝐹𝑛) ⊆ ran 𝐹)
2120ralrimiva 3146 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
2221adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ∀𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
23 iunss 5048 . . . . . 6 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹 ↔ ∀𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
2422, 23sylibr 233 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
2524sscond 4141 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐸 ran 𝐹) ⊆ (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
262adantr 481 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝐸 ⊆ ℝ)
277, 26sstrid 3993 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ ℝ)
28 ovolss 25001 . . . 4 (((𝐸 ran 𝐹) ⊆ (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ∧ (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ ℝ) → (vol*‘(𝐸 ran 𝐹)) ≤ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
2925, 27, 28syl2anc 584 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ran 𝐹)) ≤ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
306, 9, 12, 29leadd2dd 11828 . 2 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ran 𝐹))) ≤ ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
31 oveq2 7416 . . . . . . . . . . 11 (𝑧 = 1 → (1...𝑧) = (1...1))
3231iuneq1d 5024 . . . . . . . . . 10 (𝑧 = 1 → 𝑛 ∈ (1...𝑧)(𝐹𝑛) = 𝑛 ∈ (1...1)(𝐹𝑛))
3332eleq1d 2818 . . . . . . . . 9 (𝑧 = 1 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ↔ 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol))
3432ineq2d 4212 . . . . . . . . . . 11 (𝑧 = 1 → (𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛)) = (𝐸 𝑛 ∈ (1...1)(𝐹𝑛)))
3534fveq2d 6895 . . . . . . . . . 10 (𝑧 = 1 → (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))))
36 fveq2 6891 . . . . . . . . . 10 (𝑧 = 1 → (seq1( + , 𝐻)‘𝑧) = (seq1( + , 𝐻)‘1))
3735, 36eqeq12d 2748 . . . . . . . . 9 (𝑧 = 1 → ((vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧) ↔ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)))
3833, 37anbi12d 631 . . . . . . . 8 (𝑧 = 1 → (( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧)) ↔ ( 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1))))
3938imbi2d 340 . . . . . . 7 (𝑧 = 1 → ((𝜑 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧))) ↔ (𝜑 → ( 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)))))
40 oveq2 7416 . . . . . . . . . . 11 (𝑧 = 𝑘 → (1...𝑧) = (1...𝑘))
4140iuneq1d 5024 . . . . . . . . . 10 (𝑧 = 𝑘 𝑛 ∈ (1...𝑧)(𝐹𝑛) = 𝑛 ∈ (1...𝑘)(𝐹𝑛))
4241eleq1d 2818 . . . . . . . . 9 (𝑧 = 𝑘 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ↔ 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol))
4341ineq2d 4212 . . . . . . . . . . 11 (𝑧 = 𝑘 → (𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛)) = (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
4443fveq2d 6895 . . . . . . . . . 10 (𝑧 = 𝑘 → (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
45 fveq2 6891 . . . . . . . . . 10 (𝑧 = 𝑘 → (seq1( + , 𝐻)‘𝑧) = (seq1( + , 𝐻)‘𝑘))
4644, 45eqeq12d 2748 . . . . . . . . 9 (𝑧 = 𝑘 → ((vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧) ↔ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)))
4742, 46anbi12d 631 . . . . . . . 8 (𝑧 = 𝑘 → (( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧)) ↔ ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))))
4847imbi2d 340 . . . . . . 7 (𝑧 = 𝑘 → ((𝜑 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧))) ↔ (𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)))))
49 oveq2 7416 . . . . . . . . . . 11 (𝑧 = (𝑘 + 1) → (1...𝑧) = (1...(𝑘 + 1)))
5049iuneq1d 5024 . . . . . . . . . 10 (𝑧 = (𝑘 + 1) → 𝑛 ∈ (1...𝑧)(𝐹𝑛) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
5150eleq1d 2818 . . . . . . . . 9 (𝑧 = (𝑘 + 1) → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ↔ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol))
5250ineq2d 4212 . . . . . . . . . . 11 (𝑧 = (𝑘 + 1) → (𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛)) = (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)))
5352fveq2d 6895 . . . . . . . . . 10 (𝑧 = (𝑘 + 1) → (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))))
54 fveq2 6891 . . . . . . . . . 10 (𝑧 = (𝑘 + 1) → (seq1( + , 𝐻)‘𝑧) = (seq1( + , 𝐻)‘(𝑘 + 1)))
5553, 54eqeq12d 2748 . . . . . . . . 9 (𝑧 = (𝑘 + 1) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧) ↔ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))
5651, 55anbi12d 631 . . . . . . . 8 (𝑧 = (𝑘 + 1) → (( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧)) ↔ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1)))))
5756imbi2d 340 . . . . . . 7 (𝑧 = (𝑘 + 1) → ((𝜑 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧))) ↔ (𝜑 → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))))
58 1z 12591 . . . . . . . . . . 11 1 ∈ ℤ
59 fzsn 13542 . . . . . . . . . . 11 (1 ∈ ℤ → (1...1) = {1})
60 iuneq1 5013 . . . . . . . . . . 11 ((1...1) = {1} → 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛))
6158, 59, 60mp2b 10 . . . . . . . . . 10 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛)
62 1ex 11209 . . . . . . . . . . 11 1 ∈ V
63 fveq2 6891 . . . . . . . . . . 11 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
6462, 63iunxsn 5094 . . . . . . . . . 10 𝑛 ∈ {1} (𝐹𝑛) = (𝐹‘1)
6561, 64eqtri 2760 . . . . . . . . 9 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1)
66 1nn 12222 . . . . . . . . . 10 1 ∈ ℕ
67 ffvelcdm 7083 . . . . . . . . . 10 ((𝐹:ℕ⟶dom vol ∧ 1 ∈ ℕ) → (𝐹‘1) ∈ dom vol)
6814, 66, 67sylancl 586 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ dom vol)
6965, 68eqeltrid 2837 . . . . . . . 8 (𝜑 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol)
7063ineq2d 4212 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐸 ∩ (𝐹𝑛)) = (𝐸 ∩ (𝐹‘1)))
7170fveq2d 6895 . . . . . . . . . . 11 (𝑛 = 1 → (vol*‘(𝐸 ∩ (𝐹𝑛))) = (vol*‘(𝐸 ∩ (𝐹‘1))))
72 voliunlem1.6 . . . . . . . . . . 11 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐸 ∩ (𝐹𝑛))))
73 fvex 6904 . . . . . . . . . . 11 (vol*‘(𝐸 ∩ (𝐹‘1))) ∈ V
7471, 72, 73fvmpt 6998 . . . . . . . . . 10 (1 ∈ ℕ → (𝐻‘1) = (vol*‘(𝐸 ∩ (𝐹‘1))))
7566, 74ax-mp 5 . . . . . . . . 9 (𝐻‘1) = (vol*‘(𝐸 ∩ (𝐹‘1)))
76 seq1 13978 . . . . . . . . . 10 (1 ∈ ℤ → (seq1( + , 𝐻)‘1) = (𝐻‘1))
7758, 76ax-mp 5 . . . . . . . . 9 (seq1( + , 𝐻)‘1) = (𝐻‘1)
7865ineq2i 4209 . . . . . . . . . 10 (𝐸 𝑛 ∈ (1...1)(𝐹𝑛)) = (𝐸 ∩ (𝐹‘1))
7978fveq2i 6894 . . . . . . . . 9 (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (vol*‘(𝐸 ∩ (𝐹‘1)))
8075, 77, 793eqtr4ri 2771 . . . . . . . 8 (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)
8169, 80jctir 521 . . . . . . 7 (𝜑 → ( 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)))
82 peano2nn 12223 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
83 ffvelcdm 7083 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶dom vol ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ dom vol)
8414, 82, 83syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ dom vol)
85 unmbl 25053 . . . . . . . . . . . . 13 (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (𝐹‘(𝑘 + 1)) ∈ dom vol) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol)
8685ex 413 . . . . . . . . . . . 12 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol → ((𝐹‘(𝑘 + 1)) ∈ dom vol → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol))
8784, 86syl5com 31 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol))
88 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
89 nnuz 12864 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
9088, 89eleqtrdi 2843 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
91 fzsuc 13547 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘1) → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
92 iuneq1 5013 . . . . . . . . . . . . . 14 ((1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛))
9390, 91, 923syl 18 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛))
94 iunxun 5097 . . . . . . . . . . . . . 14 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛))
95 ovex 7441 . . . . . . . . . . . . . . . 16 (𝑘 + 1) ∈ V
96 fveq2 6891 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
9795, 96iunxsn 5094 . . . . . . . . . . . . . . 15 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛) = (𝐹‘(𝑘 + 1))
9897uneq2i 4160 . . . . . . . . . . . . . 14 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛)) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
9994, 98eqtri 2760 . . . . . . . . . . . . 13 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
10093, 99eqtrdi 2788 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))))
101100eleq1d 2818 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ↔ ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol))
10287, 101sylibrd 258 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol))
103 oveq1 7415 . . . . . . . . . . 11 ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
104 inss1 4228 . . . . . . . . . . . . . . 15 (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ 𝐸
105104, 26sstrid 3993 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ ℝ)
106 ovolsscl 25002 . . . . . . . . . . . . . . 15 (((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) ∈ ℝ)
107104, 2, 4, 106mp3an2ani 1468 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) ∈ ℝ)
108 mblsplit 25048 . . . . . . . . . . . . . 14 (((𝐹‘(𝑘 + 1)) ∈ dom vol ∧ (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ ℝ ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = ((vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))))))
10984, 105, 107, 108syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = ((vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))))))
110 in32 4221 . . . . . . . . . . . . . . . 16 ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1))) = ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ∩ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
111 inss2 4229 . . . . . . . . . . . . . . . . . 18 (𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ (𝐹‘(𝑘 + 1))
11282adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
113112, 89eleqtrdi 2843 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ (ℤ‘1))
114 eluzfz2 13508 . . . . . . . . . . . . . . . . . . 19 ((𝑘 + 1) ∈ (ℤ‘1) → (𝑘 + 1) ∈ (1...(𝑘 + 1)))
11596ssiun2s 5051 . . . . . . . . . . . . . . . . . . 19 ((𝑘 + 1) ∈ (1...(𝑘 + 1)) → (𝐹‘(𝑘 + 1)) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
116113, 114, 1153syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
117111, 116sstrid 3993 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
118 df-ss 3965 . . . . . . . . . . . . . . . . 17 ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ↔ ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ∩ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
119117, 118sylib 217 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ∩ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
120110, 119eqtrid 2784 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1))) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
121120fveq2d 6895 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
122 indif2 4270 . . . . . . . . . . . . . . . 16 (𝐸 ∩ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1)))) = ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1)))
123 uncom 4153 . . . . . . . . . . . . . . . . . . 19 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) = ((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛))
124100, 123eqtr2di 2789 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
125 voliunlem.5 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
126125ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → Disj 𝑖 ∈ ℕ (𝐹𝑖))
127112adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑘 + 1) ∈ ℕ)
12813adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
129128nnred 12226 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℝ)
130 elfzle2 13504 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (1...𝑘) → 𝑛𝑘)
131130adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛𝑘)
13288adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑘 ∈ ℕ)
133 nnleltp1 12616 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑛𝑘𝑛 < (𝑘 + 1)))
134128, 132, 133syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑛𝑘𝑛 < (𝑘 + 1)))
135131, 134mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 < (𝑘 + 1))
136129, 135gtned 11348 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑘 + 1) ≠ 𝑛)
137 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
138 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑛 → (𝐹𝑖) = (𝐹𝑛))
139137, 138disji2 5130 . . . . . . . . . . . . . . . . . . . . . 22 ((Disj 𝑖 ∈ ℕ (𝐹𝑖) ∧ ((𝑘 + 1) ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑘 + 1) ≠ 𝑛) → ((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = ∅)
140126, 127, 128, 136, 139syl121anc 1375 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = ∅)
141140iuneq2dv 5021 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...𝑘)((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = 𝑛 ∈ (1...𝑘)∅)
142 iunin2 5074 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ (1...𝑘)((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = ((𝐹‘(𝑘 + 1)) ∩ 𝑛 ∈ (1...𝑘)(𝐹𝑛))
143 iun0 5065 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ (1...𝑘)∅ = ∅
144141, 142, 1433eqtr3g 2795 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ∩ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = ∅)
145 uneqdifeq 4492 . . . . . . . . . . . . . . . . . . 19 (((𝐹‘(𝑘 + 1)) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∧ ((𝐹‘(𝑘 + 1)) ∩ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = ∅) → (((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ↔ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1))) = 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
146116, 144, 145syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ↔ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1))) = 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
147124, 146mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1))) = 𝑛 ∈ (1...𝑘)(𝐹𝑛))
148147ineq2d 4212 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐸 ∩ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1)))) = (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
149122, 148eqtr3id 2786 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))) = (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
150149fveq2d 6895 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1)))) = (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
151121, 150oveq12d 7426 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))))) = ((vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
152 inss1 4228 . . . . . . . . . . . . . . . 16 (𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝐸
153 ovolsscl 25002 . . . . . . . . . . . . . . . 16 (((𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ ℝ)
154152, 2, 4, 153mp3an2ani 1468 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ ℝ)
155154recnd 11241 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ ℂ)
15612recnd 11241 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℂ)
157155, 156addcomd 11415 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
158109, 151, 1573eqtrd 2776 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
159 seqp1 13980 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘1) → (seq1( + , 𝐻)‘(𝑘 + 1)) = ((seq1( + , 𝐻)‘𝑘) + (𝐻‘(𝑘 + 1))))
16090, 159syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘(𝑘 + 1)) = ((seq1( + , 𝐻)‘𝑘) + (𝐻‘(𝑘 + 1))))
16196ineq2d 4212 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → (𝐸 ∩ (𝐹𝑛)) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
162161fveq2d 6895 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (vol*‘(𝐸 ∩ (𝐹𝑛))) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
163 fvex 6904 . . . . . . . . . . . . . . . 16 (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ V
164162, 72, 163fvmpt 6998 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (𝐻‘(𝑘 + 1)) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
165112, 164syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐻‘(𝑘 + 1)) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
166165oveq2d 7424 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (𝐻‘(𝑘 + 1))) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
167160, 166eqtrd 2772 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘(𝑘 + 1)) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
168158, 167eqeq12d 2748 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1)) ↔ ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))))
169103, 168imbitrrid 245 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))
170102, 169anim12d 609 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1)))))
171170expcom 414 . . . . . . . 8 (𝑘 ∈ ℕ → (𝜑 → (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))))
172171a2d 29 . . . . . . 7 (𝑘 ∈ ℕ → ((𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))) → (𝜑 → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))))
17339, 48, 57, 48, 81, 172nnind 12229 . . . . . 6 (𝑘 ∈ ℕ → (𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))))
174173impcom 408 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)))
175174simprd 496 . . . 4 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))
176175eqcomd 2738 . . 3 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) = (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
177176oveq1d 7423 . 2 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ran 𝐹))) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ran 𝐹))))
178174simpld 495 . . 3 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol)
179 mblsplit 25048 . . 3 (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ 𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘𝐸) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
180178, 26, 4, 179syl3anc 1371 . 2 ((𝜑𝑘 ∈ ℕ) → (vol*‘𝐸) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
18130, 177, 1803brtr4d 5180 1 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ran 𝐹))) ≤ (vol*‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wral 3061  cdif 3945  cun 3946  cin 3947  wss 3948  c0 4322  {csn 4628   cuni 4908   ciun 4997  Disj wdisj 5113   class class class wbr 5148  cmpt 5231  dom cdm 5676  ran crn 5677   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7408  cr 11108  1c1 11110   + caddc 11112   < clt 11247  cle 11248  cn 12211  cz 12557  cuz 12821  ...cfz 13483  seqcseq 13965  vol*covol 24978  volcvol 24979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12974  df-ioo 13327  df-ico 13329  df-icc 13330  df-fz 13484  df-fl 13756  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-ovol 24980  df-vol 24981
This theorem is referenced by:  voliunlem2  25067  voliunlem3  25068
  Copyright terms: Public domain W3C validator