MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem1 Structured version   Visualization version   GIF version

Theorem voliunlem1 25478
Description: Lemma for voliun 25482. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (𝜑𝐹:ℕ⟶dom vol)
voliunlem.5 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
voliunlem1.6 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐸 ∩ (𝐹𝑛))))
voliunlem1.7 (𝜑𝐸 ⊆ ℝ)
voliunlem1.8 (𝜑 → (vol*‘𝐸) ∈ ℝ)
Assertion
Ref Expression
voliunlem1 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ran 𝐹))) ≤ (vol*‘𝐸))
Distinct variable groups:   𝑘,𝑛,𝐸   𝑖,𝑘,𝑛,𝐹   𝑘,𝐻   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑖)   𝐸(𝑖)   𝐻(𝑖,𝑛)

Proof of Theorem voliunlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 difss 4083 . . . 4 (𝐸 ran 𝐹) ⊆ 𝐸
2 voliunlem1.7 . . . 4 (𝜑𝐸 ⊆ ℝ)
3 voliunlem1.8 . . . . 5 (𝜑 → (vol*‘𝐸) ∈ ℝ)
43adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ) → (vol*‘𝐸) ∈ ℝ)
5 ovolsscl 25414 . . . 4 (((𝐸 ran 𝐹) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 ran 𝐹)) ∈ ℝ)
61, 2, 4, 5mp3an2ani 1470 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ran 𝐹)) ∈ ℝ)
7 difss 4083 . . . 4 (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸
8 ovolsscl 25414 . . . 4 (((𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
97, 2, 4, 8mp3an2ani 1470 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
10 inss1 4184 . . . 4 (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸
11 ovolsscl 25414 . . . 4 (((𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
1210, 2, 4, 11mp3an2ani 1470 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
13 elfznn 13453 . . . . . . . . 9 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
14 voliunlem.3 . . . . . . . . . . . 12 (𝜑𝐹:ℕ⟶dom vol)
1514ffnd 6652 . . . . . . . . . . 11 (𝜑𝐹 Fn ℕ)
16 fnfvelrn 7013 . . . . . . . . . . 11 ((𝐹 Fn ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
1715, 16sylan 580 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
18 elssuni 4887 . . . . . . . . . 10 ((𝐹𝑛) ∈ ran 𝐹 → (𝐹𝑛) ⊆ ran 𝐹)
1917, 18syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ran 𝐹)
2013, 19sylan2 593 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑘)) → (𝐹𝑛) ⊆ ran 𝐹)
2120ralrimiva 3124 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
2221adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ∀𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
23 iunss 4992 . . . . . 6 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹 ↔ ∀𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
2422, 23sylibr 234 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
2524sscond 4093 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐸 ran 𝐹) ⊆ (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
262adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝐸 ⊆ ℝ)
277, 26sstrid 3941 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ ℝ)
28 ovolss 25413 . . . 4 (((𝐸 ran 𝐹) ⊆ (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ∧ (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ ℝ) → (vol*‘(𝐸 ran 𝐹)) ≤ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
2925, 27, 28syl2anc 584 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ran 𝐹)) ≤ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
306, 9, 12, 29leadd2dd 11732 . 2 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ran 𝐹))) ≤ ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
31 oveq2 7354 . . . . . . . . . . 11 (𝑧 = 1 → (1...𝑧) = (1...1))
3231iuneq1d 4967 . . . . . . . . . 10 (𝑧 = 1 → 𝑛 ∈ (1...𝑧)(𝐹𝑛) = 𝑛 ∈ (1...1)(𝐹𝑛))
3332eleq1d 2816 . . . . . . . . 9 (𝑧 = 1 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ↔ 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol))
3432ineq2d 4167 . . . . . . . . . . 11 (𝑧 = 1 → (𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛)) = (𝐸 𝑛 ∈ (1...1)(𝐹𝑛)))
3534fveq2d 6826 . . . . . . . . . 10 (𝑧 = 1 → (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))))
36 fveq2 6822 . . . . . . . . . 10 (𝑧 = 1 → (seq1( + , 𝐻)‘𝑧) = (seq1( + , 𝐻)‘1))
3735, 36eqeq12d 2747 . . . . . . . . 9 (𝑧 = 1 → ((vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧) ↔ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)))
3833, 37anbi12d 632 . . . . . . . 8 (𝑧 = 1 → (( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧)) ↔ ( 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1))))
3938imbi2d 340 . . . . . . 7 (𝑧 = 1 → ((𝜑 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧))) ↔ (𝜑 → ( 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)))))
40 oveq2 7354 . . . . . . . . . . 11 (𝑧 = 𝑘 → (1...𝑧) = (1...𝑘))
4140iuneq1d 4967 . . . . . . . . . 10 (𝑧 = 𝑘 𝑛 ∈ (1...𝑧)(𝐹𝑛) = 𝑛 ∈ (1...𝑘)(𝐹𝑛))
4241eleq1d 2816 . . . . . . . . 9 (𝑧 = 𝑘 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ↔ 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol))
4341ineq2d 4167 . . . . . . . . . . 11 (𝑧 = 𝑘 → (𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛)) = (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
4443fveq2d 6826 . . . . . . . . . 10 (𝑧 = 𝑘 → (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
45 fveq2 6822 . . . . . . . . . 10 (𝑧 = 𝑘 → (seq1( + , 𝐻)‘𝑧) = (seq1( + , 𝐻)‘𝑘))
4644, 45eqeq12d 2747 . . . . . . . . 9 (𝑧 = 𝑘 → ((vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧) ↔ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)))
4742, 46anbi12d 632 . . . . . . . 8 (𝑧 = 𝑘 → (( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧)) ↔ ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))))
4847imbi2d 340 . . . . . . 7 (𝑧 = 𝑘 → ((𝜑 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧))) ↔ (𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)))))
49 oveq2 7354 . . . . . . . . . . 11 (𝑧 = (𝑘 + 1) → (1...𝑧) = (1...(𝑘 + 1)))
5049iuneq1d 4967 . . . . . . . . . 10 (𝑧 = (𝑘 + 1) → 𝑛 ∈ (1...𝑧)(𝐹𝑛) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
5150eleq1d 2816 . . . . . . . . 9 (𝑧 = (𝑘 + 1) → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ↔ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol))
5250ineq2d 4167 . . . . . . . . . . 11 (𝑧 = (𝑘 + 1) → (𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛)) = (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)))
5352fveq2d 6826 . . . . . . . . . 10 (𝑧 = (𝑘 + 1) → (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))))
54 fveq2 6822 . . . . . . . . . 10 (𝑧 = (𝑘 + 1) → (seq1( + , 𝐻)‘𝑧) = (seq1( + , 𝐻)‘(𝑘 + 1)))
5553, 54eqeq12d 2747 . . . . . . . . 9 (𝑧 = (𝑘 + 1) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧) ↔ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))
5651, 55anbi12d 632 . . . . . . . 8 (𝑧 = (𝑘 + 1) → (( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧)) ↔ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1)))))
5756imbi2d 340 . . . . . . 7 (𝑧 = (𝑘 + 1) → ((𝜑 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧))) ↔ (𝜑 → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))))
58 1z 12502 . . . . . . . . . . 11 1 ∈ ℤ
59 fzsn 13466 . . . . . . . . . . 11 (1 ∈ ℤ → (1...1) = {1})
60 iuneq1 4956 . . . . . . . . . . 11 ((1...1) = {1} → 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛))
6158, 59, 60mp2b 10 . . . . . . . . . 10 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛)
62 1ex 11108 . . . . . . . . . . 11 1 ∈ V
63 fveq2 6822 . . . . . . . . . . 11 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
6462, 63iunxsn 5037 . . . . . . . . . 10 𝑛 ∈ {1} (𝐹𝑛) = (𝐹‘1)
6561, 64eqtri 2754 . . . . . . . . 9 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1)
66 1nn 12136 . . . . . . . . . 10 1 ∈ ℕ
67 ffvelcdm 7014 . . . . . . . . . 10 ((𝐹:ℕ⟶dom vol ∧ 1 ∈ ℕ) → (𝐹‘1) ∈ dom vol)
6814, 66, 67sylancl 586 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ dom vol)
6965, 68eqeltrid 2835 . . . . . . . 8 (𝜑 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol)
7063ineq2d 4167 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐸 ∩ (𝐹𝑛)) = (𝐸 ∩ (𝐹‘1)))
7170fveq2d 6826 . . . . . . . . . . 11 (𝑛 = 1 → (vol*‘(𝐸 ∩ (𝐹𝑛))) = (vol*‘(𝐸 ∩ (𝐹‘1))))
72 voliunlem1.6 . . . . . . . . . . 11 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐸 ∩ (𝐹𝑛))))
73 fvex 6835 . . . . . . . . . . 11 (vol*‘(𝐸 ∩ (𝐹‘1))) ∈ V
7471, 72, 73fvmpt 6929 . . . . . . . . . 10 (1 ∈ ℕ → (𝐻‘1) = (vol*‘(𝐸 ∩ (𝐹‘1))))
7566, 74ax-mp 5 . . . . . . . . 9 (𝐻‘1) = (vol*‘(𝐸 ∩ (𝐹‘1)))
76 seq1 13921 . . . . . . . . . 10 (1 ∈ ℤ → (seq1( + , 𝐻)‘1) = (𝐻‘1))
7758, 76ax-mp 5 . . . . . . . . 9 (seq1( + , 𝐻)‘1) = (𝐻‘1)
7865ineq2i 4164 . . . . . . . . . 10 (𝐸 𝑛 ∈ (1...1)(𝐹𝑛)) = (𝐸 ∩ (𝐹‘1))
7978fveq2i 6825 . . . . . . . . 9 (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (vol*‘(𝐸 ∩ (𝐹‘1)))
8075, 77, 793eqtr4ri 2765 . . . . . . . 8 (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)
8169, 80jctir 520 . . . . . . 7 (𝜑 → ( 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)))
82 peano2nn 12137 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
83 ffvelcdm 7014 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶dom vol ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ dom vol)
8414, 82, 83syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ dom vol)
85 unmbl 25465 . . . . . . . . . . . . 13 (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (𝐹‘(𝑘 + 1)) ∈ dom vol) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol)
8685ex 412 . . . . . . . . . . . 12 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol → ((𝐹‘(𝑘 + 1)) ∈ dom vol → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol))
8784, 86syl5com 31 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol))
88 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
89 nnuz 12775 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
9088, 89eleqtrdi 2841 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
91 fzsuc 13471 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘1) → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
92 iuneq1 4956 . . . . . . . . . . . . . 14 ((1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛))
9390, 91, 923syl 18 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛))
94 iunxun 5040 . . . . . . . . . . . . . 14 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛))
95 ovex 7379 . . . . . . . . . . . . . . . 16 (𝑘 + 1) ∈ V
96 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
9795, 96iunxsn 5037 . . . . . . . . . . . . . . 15 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛) = (𝐹‘(𝑘 + 1))
9897uneq2i 4112 . . . . . . . . . . . . . 14 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛)) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
9994, 98eqtri 2754 . . . . . . . . . . . . 13 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
10093, 99eqtrdi 2782 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))))
101100eleq1d 2816 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ↔ ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol))
10287, 101sylibrd 259 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol))
103 oveq1 7353 . . . . . . . . . . 11 ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
104 inss1 4184 . . . . . . . . . . . . . . 15 (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ 𝐸
105104, 26sstrid 3941 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ ℝ)
106 ovolsscl 25414 . . . . . . . . . . . . . . 15 (((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) ∈ ℝ)
107104, 2, 4, 106mp3an2ani 1470 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) ∈ ℝ)
108 mblsplit 25460 . . . . . . . . . . . . . 14 (((𝐹‘(𝑘 + 1)) ∈ dom vol ∧ (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ ℝ ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = ((vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))))))
10984, 105, 107, 108syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = ((vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))))))
110 in32 4177 . . . . . . . . . . . . . . . 16 ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1))) = ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ∩ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
111 inss2 4185 . . . . . . . . . . . . . . . . . 18 (𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ (𝐹‘(𝑘 + 1))
11282adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
113112, 89eleqtrdi 2841 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ (ℤ‘1))
114 eluzfz2 13432 . . . . . . . . . . . . . . . . . . 19 ((𝑘 + 1) ∈ (ℤ‘1) → (𝑘 + 1) ∈ (1...(𝑘 + 1)))
11596ssiun2s 4995 . . . . . . . . . . . . . . . . . . 19 ((𝑘 + 1) ∈ (1...(𝑘 + 1)) → (𝐹‘(𝑘 + 1)) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
116113, 114, 1153syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
117111, 116sstrid 3941 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
118 dfss2 3915 . . . . . . . . . . . . . . . . 17 ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ↔ ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ∩ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
119117, 118sylib 218 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ∩ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
120110, 119eqtrid 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1))) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
121120fveq2d 6826 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
122 indif2 4228 . . . . . . . . . . . . . . . 16 (𝐸 ∩ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1)))) = ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1)))
123 uncom 4105 . . . . . . . . . . . . . . . . . . 19 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) = ((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛))
124100, 123eqtr2di 2783 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
125 voliunlem.5 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
126125ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → Disj 𝑖 ∈ ℕ (𝐹𝑖))
127112adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑘 + 1) ∈ ℕ)
12813adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
129128nnred 12140 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℝ)
130 elfzle2 13428 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (1...𝑘) → 𝑛𝑘)
131130adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛𝑘)
13288adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑘 ∈ ℕ)
133 nnleltp1 12528 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑛𝑘𝑛 < (𝑘 + 1)))
134128, 132, 133syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑛𝑘𝑛 < (𝑘 + 1)))
135131, 134mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 < (𝑘 + 1))
136129, 135gtned 11248 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑘 + 1) ≠ 𝑛)
137 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
138 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑛 → (𝐹𝑖) = (𝐹𝑛))
139137, 138disji2 5073 . . . . . . . . . . . . . . . . . . . . . 22 ((Disj 𝑖 ∈ ℕ (𝐹𝑖) ∧ ((𝑘 + 1) ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑘 + 1) ≠ 𝑛) → ((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = ∅)
140126, 127, 128, 136, 139syl121anc 1377 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = ∅)
141140iuneq2dv 4964 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...𝑘)((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = 𝑛 ∈ (1...𝑘)∅)
142 iunin2 5017 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ (1...𝑘)((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = ((𝐹‘(𝑘 + 1)) ∩ 𝑛 ∈ (1...𝑘)(𝐹𝑛))
143 iun0 5008 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ (1...𝑘)∅ = ∅
144141, 142, 1433eqtr3g 2789 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ∩ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = ∅)
145 uneqdifeq 4440 . . . . . . . . . . . . . . . . . . 19 (((𝐹‘(𝑘 + 1)) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∧ ((𝐹‘(𝑘 + 1)) ∩ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = ∅) → (((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ↔ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1))) = 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
146116, 144, 145syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ↔ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1))) = 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
147124, 146mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1))) = 𝑛 ∈ (1...𝑘)(𝐹𝑛))
148147ineq2d 4167 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐸 ∩ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1)))) = (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
149122, 148eqtr3id 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))) = (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
150149fveq2d 6826 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1)))) = (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
151121, 150oveq12d 7364 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))))) = ((vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
152 inss1 4184 . . . . . . . . . . . . . . . 16 (𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝐸
153 ovolsscl 25414 . . . . . . . . . . . . . . . 16 (((𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ ℝ)
154152, 2, 4, 153mp3an2ani 1470 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ ℝ)
155154recnd 11140 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ ℂ)
15612recnd 11140 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℂ)
157155, 156addcomd 11315 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
158109, 151, 1573eqtrd 2770 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
159 seqp1 13923 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘1) → (seq1( + , 𝐻)‘(𝑘 + 1)) = ((seq1( + , 𝐻)‘𝑘) + (𝐻‘(𝑘 + 1))))
16090, 159syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘(𝑘 + 1)) = ((seq1( + , 𝐻)‘𝑘) + (𝐻‘(𝑘 + 1))))
16196ineq2d 4167 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → (𝐸 ∩ (𝐹𝑛)) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
162161fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (vol*‘(𝐸 ∩ (𝐹𝑛))) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
163 fvex 6835 . . . . . . . . . . . . . . . 16 (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ V
164162, 72, 163fvmpt 6929 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (𝐻‘(𝑘 + 1)) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
165112, 164syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐻‘(𝑘 + 1)) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
166165oveq2d 7362 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (𝐻‘(𝑘 + 1))) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
167160, 166eqtrd 2766 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘(𝑘 + 1)) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
168158, 167eqeq12d 2747 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1)) ↔ ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))))
169103, 168imbitrrid 246 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))
170102, 169anim12d 609 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1)))))
171170expcom 413 . . . . . . . 8 (𝑘 ∈ ℕ → (𝜑 → (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))))
172171a2d 29 . . . . . . 7 (𝑘 ∈ ℕ → ((𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))) → (𝜑 → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))))
17339, 48, 57, 48, 81, 172nnind 12143 . . . . . 6 (𝑘 ∈ ℕ → (𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))))
174173impcom 407 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)))
175174simprd 495 . . . 4 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))
176175eqcomd 2737 . . 3 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) = (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
177176oveq1d 7361 . 2 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ran 𝐹))) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ran 𝐹))))
178174simpld 494 . . 3 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol)
179 mblsplit 25460 . . 3 (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ 𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘𝐸) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
180178, 26, 4, 179syl3anc 1373 . 2 ((𝜑𝑘 ∈ ℕ) → (vol*‘𝐸) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
18130, 177, 1803brtr4d 5121 1 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ran 𝐹))) ≤ (vol*‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280  {csn 4573   cuni 4856   ciun 4939  Disj wdisj 5056   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cn 12125  cz 12468  cuz 12732  ...cfz 13407  seqcseq 13908  vol*covol 25390  volcvol 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-ovol 25392  df-vol 25393
This theorem is referenced by:  voliunlem2  25479  voliunlem3  25480
  Copyright terms: Public domain W3C validator