MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  voliunlem1 Structured version   Visualization version   GIF version

Theorem voliunlem1 24937
Description: Lemma for voliun 24941. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
voliunlem.3 (𝜑𝐹:ℕ⟶dom vol)
voliunlem.5 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
voliunlem1.6 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐸 ∩ (𝐹𝑛))))
voliunlem1.7 (𝜑𝐸 ⊆ ℝ)
voliunlem1.8 (𝜑 → (vol*‘𝐸) ∈ ℝ)
Assertion
Ref Expression
voliunlem1 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ran 𝐹))) ≤ (vol*‘𝐸))
Distinct variable groups:   𝑘,𝑛,𝐸   𝑖,𝑘,𝑛,𝐹   𝑘,𝐻   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑖)   𝐸(𝑖)   𝐻(𝑖,𝑛)

Proof of Theorem voliunlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 difss 4095 . . . 4 (𝐸 ran 𝐹) ⊆ 𝐸
2 voliunlem1.7 . . . 4 (𝜑𝐸 ⊆ ℝ)
3 voliunlem1.8 . . . . 5 (𝜑 → (vol*‘𝐸) ∈ ℝ)
43adantr 482 . . . 4 ((𝜑𝑘 ∈ ℕ) → (vol*‘𝐸) ∈ ℝ)
5 ovolsscl 24873 . . . 4 (((𝐸 ran 𝐹) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 ran 𝐹)) ∈ ℝ)
61, 2, 4, 5mp3an2ani 1469 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ran 𝐹)) ∈ ℝ)
7 difss 4095 . . . 4 (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸
8 ovolsscl 24873 . . . 4 (((𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
97, 2, 4, 8mp3an2ani 1469 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
10 inss1 4192 . . . 4 (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸
11 ovolsscl 24873 . . . 4 (((𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
1210, 2, 4, 11mp3an2ani 1469 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℝ)
13 elfznn 13479 . . . . . . . . 9 (𝑛 ∈ (1...𝑘) → 𝑛 ∈ ℕ)
14 voliunlem.3 . . . . . . . . . . . 12 (𝜑𝐹:ℕ⟶dom vol)
1514ffnd 6673 . . . . . . . . . . 11 (𝜑𝐹 Fn ℕ)
16 fnfvelrn 7035 . . . . . . . . . . 11 ((𝐹 Fn ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
1715, 16sylan 581 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ran 𝐹)
18 elssuni 4902 . . . . . . . . . 10 ((𝐹𝑛) ∈ ran 𝐹 → (𝐹𝑛) ⊆ ran 𝐹)
1917, 18syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ ran 𝐹)
2013, 19sylan2 594 . . . . . . . 8 ((𝜑𝑛 ∈ (1...𝑘)) → (𝐹𝑛) ⊆ ran 𝐹)
2120ralrimiva 3140 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
2221adantr 482 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ∀𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
23 iunss 5009 . . . . . 6 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹 ↔ ∀𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
2422, 23sylibr 233 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...𝑘)(𝐹𝑛) ⊆ ran 𝐹)
2524sscond 4105 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐸 ran 𝐹) ⊆ (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
262adantr 482 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝐸 ⊆ ℝ)
277, 26sstrid 3959 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ ℝ)
28 ovolss 24872 . . . 4 (((𝐸 ran 𝐹) ⊆ (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ∧ (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)) ⊆ ℝ) → (vol*‘(𝐸 ran 𝐹)) ≤ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
2925, 27, 28syl2anc 585 . . 3 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ran 𝐹)) ≤ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
306, 9, 12, 29leadd2dd 11778 . 2 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ran 𝐹))) ≤ ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
31 oveq2 7369 . . . . . . . . . . 11 (𝑧 = 1 → (1...𝑧) = (1...1))
3231iuneq1d 4985 . . . . . . . . . 10 (𝑧 = 1 → 𝑛 ∈ (1...𝑧)(𝐹𝑛) = 𝑛 ∈ (1...1)(𝐹𝑛))
3332eleq1d 2819 . . . . . . . . 9 (𝑧 = 1 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ↔ 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol))
3432ineq2d 4176 . . . . . . . . . . 11 (𝑧 = 1 → (𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛)) = (𝐸 𝑛 ∈ (1...1)(𝐹𝑛)))
3534fveq2d 6850 . . . . . . . . . 10 (𝑧 = 1 → (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))))
36 fveq2 6846 . . . . . . . . . 10 (𝑧 = 1 → (seq1( + , 𝐻)‘𝑧) = (seq1( + , 𝐻)‘1))
3735, 36eqeq12d 2749 . . . . . . . . 9 (𝑧 = 1 → ((vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧) ↔ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)))
3833, 37anbi12d 632 . . . . . . . 8 (𝑧 = 1 → (( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧)) ↔ ( 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1))))
3938imbi2d 341 . . . . . . 7 (𝑧 = 1 → ((𝜑 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧))) ↔ (𝜑 → ( 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)))))
40 oveq2 7369 . . . . . . . . . . 11 (𝑧 = 𝑘 → (1...𝑧) = (1...𝑘))
4140iuneq1d 4985 . . . . . . . . . 10 (𝑧 = 𝑘 𝑛 ∈ (1...𝑧)(𝐹𝑛) = 𝑛 ∈ (1...𝑘)(𝐹𝑛))
4241eleq1d 2819 . . . . . . . . 9 (𝑧 = 𝑘 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ↔ 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol))
4341ineq2d 4176 . . . . . . . . . . 11 (𝑧 = 𝑘 → (𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛)) = (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
4443fveq2d 6850 . . . . . . . . . 10 (𝑧 = 𝑘 → (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
45 fveq2 6846 . . . . . . . . . 10 (𝑧 = 𝑘 → (seq1( + , 𝐻)‘𝑧) = (seq1( + , 𝐻)‘𝑘))
4644, 45eqeq12d 2749 . . . . . . . . 9 (𝑧 = 𝑘 → ((vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧) ↔ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)))
4742, 46anbi12d 632 . . . . . . . 8 (𝑧 = 𝑘 → (( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧)) ↔ ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))))
4847imbi2d 341 . . . . . . 7 (𝑧 = 𝑘 → ((𝜑 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧))) ↔ (𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)))))
49 oveq2 7369 . . . . . . . . . . 11 (𝑧 = (𝑘 + 1) → (1...𝑧) = (1...(𝑘 + 1)))
5049iuneq1d 4985 . . . . . . . . . 10 (𝑧 = (𝑘 + 1) → 𝑛 ∈ (1...𝑧)(𝐹𝑛) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
5150eleq1d 2819 . . . . . . . . 9 (𝑧 = (𝑘 + 1) → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ↔ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol))
5250ineq2d 4176 . . . . . . . . . . 11 (𝑧 = (𝑘 + 1) → (𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛)) = (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)))
5352fveq2d 6850 . . . . . . . . . 10 (𝑧 = (𝑘 + 1) → (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))))
54 fveq2 6846 . . . . . . . . . 10 (𝑧 = (𝑘 + 1) → (seq1( + , 𝐻)‘𝑧) = (seq1( + , 𝐻)‘(𝑘 + 1)))
5553, 54eqeq12d 2749 . . . . . . . . 9 (𝑧 = (𝑘 + 1) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧) ↔ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))
5651, 55anbi12d 632 . . . . . . . 8 (𝑧 = (𝑘 + 1) → (( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧)) ↔ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1)))))
5756imbi2d 341 . . . . . . 7 (𝑧 = (𝑘 + 1) → ((𝜑 → ( 𝑛 ∈ (1...𝑧)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑧)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑧))) ↔ (𝜑 → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))))
58 1z 12541 . . . . . . . . . . 11 1 ∈ ℤ
59 fzsn 13492 . . . . . . . . . . 11 (1 ∈ ℤ → (1...1) = {1})
60 iuneq1 4974 . . . . . . . . . . 11 ((1...1) = {1} → 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛))
6158, 59, 60mp2b 10 . . . . . . . . . 10 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛)
62 1ex 11159 . . . . . . . . . . 11 1 ∈ V
63 fveq2 6846 . . . . . . . . . . 11 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
6462, 63iunxsn 5055 . . . . . . . . . 10 𝑛 ∈ {1} (𝐹𝑛) = (𝐹‘1)
6561, 64eqtri 2761 . . . . . . . . 9 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1)
66 1nn 12172 . . . . . . . . . 10 1 ∈ ℕ
67 ffvelcdm 7036 . . . . . . . . . 10 ((𝐹:ℕ⟶dom vol ∧ 1 ∈ ℕ) → (𝐹‘1) ∈ dom vol)
6814, 66, 67sylancl 587 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ dom vol)
6965, 68eqeltrid 2838 . . . . . . . 8 (𝜑 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol)
7063ineq2d 4176 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐸 ∩ (𝐹𝑛)) = (𝐸 ∩ (𝐹‘1)))
7170fveq2d 6850 . . . . . . . . . . 11 (𝑛 = 1 → (vol*‘(𝐸 ∩ (𝐹𝑛))) = (vol*‘(𝐸 ∩ (𝐹‘1))))
72 voliunlem1.6 . . . . . . . . . . 11 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐸 ∩ (𝐹𝑛))))
73 fvex 6859 . . . . . . . . . . 11 (vol*‘(𝐸 ∩ (𝐹‘1))) ∈ V
7471, 72, 73fvmpt 6952 . . . . . . . . . 10 (1 ∈ ℕ → (𝐻‘1) = (vol*‘(𝐸 ∩ (𝐹‘1))))
7566, 74ax-mp 5 . . . . . . . . 9 (𝐻‘1) = (vol*‘(𝐸 ∩ (𝐹‘1)))
76 seq1 13928 . . . . . . . . . 10 (1 ∈ ℤ → (seq1( + , 𝐻)‘1) = (𝐻‘1))
7758, 76ax-mp 5 . . . . . . . . 9 (seq1( + , 𝐻)‘1) = (𝐻‘1)
7865ineq2i 4173 . . . . . . . . . 10 (𝐸 𝑛 ∈ (1...1)(𝐹𝑛)) = (𝐸 ∩ (𝐹‘1))
7978fveq2i 6849 . . . . . . . . 9 (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (vol*‘(𝐸 ∩ (𝐹‘1)))
8075, 77, 793eqtr4ri 2772 . . . . . . . 8 (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)
8169, 80jctir 522 . . . . . . 7 (𝜑 → ( 𝑛 ∈ (1...1)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...1)(𝐹𝑛))) = (seq1( + , 𝐻)‘1)))
82 peano2nn 12173 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
83 ffvelcdm 7036 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶dom vol ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ dom vol)
8414, 82, 83syl2an 597 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ dom vol)
85 unmbl 24924 . . . . . . . . . . . . 13 (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (𝐹‘(𝑘 + 1)) ∈ dom vol) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol)
8685ex 414 . . . . . . . . . . . 12 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol → ((𝐹‘(𝑘 + 1)) ∈ dom vol → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol))
8784, 86syl5com 31 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol))
88 simpr 486 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
89 nnuz 12814 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
9088, 89eleqtrdi 2844 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
91 fzsuc 13497 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘1) → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
92 iuneq1 4974 . . . . . . . . . . . . . 14 ((1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛))
9390, 91, 923syl 18 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛))
94 iunxun 5058 . . . . . . . . . . . . . 14 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛))
95 ovex 7394 . . . . . . . . . . . . . . . 16 (𝑘 + 1) ∈ V
96 fveq2 6846 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
9795, 96iunxsn 5055 . . . . . . . . . . . . . . 15 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛) = (𝐹‘(𝑘 + 1))
9897uneq2i 4124 . . . . . . . . . . . . . 14 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛)) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
9994, 98eqtri 2761 . . . . . . . . . . . . 13 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
10093, 99eqtrdi 2789 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))))
101100eleq1d 2819 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ↔ ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) ∈ dom vol))
10287, 101sylibrd 259 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol))
103 oveq1 7368 . . . . . . . . . . 11 ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
104 inss1 4192 . . . . . . . . . . . . . . 15 (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ 𝐸
105104, 26sstrid 3959 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ ℝ)
106 ovolsscl 24873 . . . . . . . . . . . . . . 15 (((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) ∈ ℝ)
107104, 2, 4, 106mp3an2ani 1469 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) ∈ ℝ)
108 mblsplit 24919 . . . . . . . . . . . . . 14 (((𝐹‘(𝑘 + 1)) ∈ dom vol ∧ (𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ⊆ ℝ ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) ∈ ℝ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = ((vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))))))
10984, 105, 107, 108syl3anc 1372 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = ((vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))))))
110 in32 4185 . . . . . . . . . . . . . . . 16 ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1))) = ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ∩ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
111 inss2 4193 . . . . . . . . . . . . . . . . . 18 (𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ (𝐹‘(𝑘 + 1))
11282adantl 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
113112, 89eleqtrdi 2844 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ (ℤ‘1))
114 eluzfz2 13458 . . . . . . . . . . . . . . . . . . 19 ((𝑘 + 1) ∈ (ℤ‘1) → (𝑘 + 1) ∈ (1...(𝑘 + 1)))
11596ssiun2s 5012 . . . . . . . . . . . . . . . . . . 19 ((𝑘 + 1) ∈ (1...(𝑘 + 1)) → (𝐹‘(𝑘 + 1)) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
116113, 114, 1153syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
117111, 116sstrid 3959 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
118 df-ss 3931 . . . . . . . . . . . . . . . . 17 ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ↔ ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ∩ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
119117, 118sylib 217 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → ((𝐸 ∩ (𝐹‘(𝑘 + 1))) ∩ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
120110, 119eqtrid 2785 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1))) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
121120fveq2d 6850 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
122 indif2 4234 . . . . . . . . . . . . . . . 16 (𝐸 ∩ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1)))) = ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1)))
123 uncom 4117 . . . . . . . . . . . . . . . . . . 19 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) = ((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛))
124100, 123eqtr2di 2790 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
125 voliunlem.5 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑Disj 𝑖 ∈ ℕ (𝐹𝑖))
126125ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → Disj 𝑖 ∈ ℕ (𝐹𝑖))
127112adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑘 + 1) ∈ ℕ)
12813adantl 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℕ)
129128nnred 12176 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 ∈ ℝ)
130 elfzle2 13454 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (1...𝑘) → 𝑛𝑘)
131130adantl 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛𝑘)
13288adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑘 ∈ ℕ)
133 nnleltp1 12566 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑛𝑘𝑛 < (𝑘 + 1)))
134128, 132, 133syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑛𝑘𝑛 < (𝑘 + 1)))
135131, 134mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → 𝑛 < (𝑘 + 1))
136129, 135gtned 11298 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → (𝑘 + 1) ≠ 𝑛)
137 fveq2 6846 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
138 fveq2 6846 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑛 → (𝐹𝑖) = (𝐹𝑛))
139137, 138disji2 5091 . . . . . . . . . . . . . . . . . . . . . 22 ((Disj 𝑖 ∈ ℕ (𝐹𝑖) ∧ ((𝑘 + 1) ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑘 + 1) ≠ 𝑛) → ((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = ∅)
140126, 127, 128, 136, 139syl121anc 1376 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑘)) → ((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = ∅)
141140iuneq2dv 4982 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...𝑘)((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = 𝑛 ∈ (1...𝑘)∅)
142 iunin2 5035 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ (1...𝑘)((𝐹‘(𝑘 + 1)) ∩ (𝐹𝑛)) = ((𝐹‘(𝑘 + 1)) ∩ 𝑛 ∈ (1...𝑘)(𝐹𝑛))
143 iun0 5026 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ (1...𝑘)∅ = ∅
144141, 142, 1433eqtr3g 2796 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ∩ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = ∅)
145 uneqdifeq 4454 . . . . . . . . . . . . . . . . . . 19 (((𝐹‘(𝑘 + 1)) ⊆ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∧ ((𝐹‘(𝑘 + 1)) ∩ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = ∅) → (((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ↔ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1))) = 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
146116, 144, 145syl2anc 585 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘(𝑘 + 1)) ∪ 𝑛 ∈ (1...𝑘)(𝐹𝑛)) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ↔ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1))) = 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
147124, 146mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1))) = 𝑛 ∈ (1...𝑘)(𝐹𝑛))
148147ineq2d 4176 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐸 ∩ ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∖ (𝐹‘(𝑘 + 1)))) = (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
149122, 148eqtr3id 2787 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))) = (𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))
150149fveq2d 6850 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1)))) = (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
151121, 150oveq12d 7379 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘((𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛)) ∖ (𝐹‘(𝑘 + 1))))) = ((vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
152 inss1 4192 . . . . . . . . . . . . . . . 16 (𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝐸
153 ovolsscl 24873 . . . . . . . . . . . . . . . 16 (((𝐸 ∩ (𝐹‘(𝑘 + 1))) ⊆ 𝐸𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ ℝ)
154152, 2, 4, 153mp3an2ani 1469 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ ℝ)
155154recnd 11191 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ ℂ)
15612recnd 11191 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) ∈ ℂ)
157155, 156addcomd 11365 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
158109, 151, 1573eqtrd 2777 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
159 seqp1 13930 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘1) → (seq1( + , 𝐻)‘(𝑘 + 1)) = ((seq1( + , 𝐻)‘𝑘) + (𝐻‘(𝑘 + 1))))
16090, 159syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘(𝑘 + 1)) = ((seq1( + , 𝐻)‘𝑘) + (𝐻‘(𝑘 + 1))))
16196ineq2d 4176 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → (𝐸 ∩ (𝐹𝑛)) = (𝐸 ∩ (𝐹‘(𝑘 + 1))))
162161fveq2d 6850 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (vol*‘(𝐸 ∩ (𝐹𝑛))) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
163 fvex 6859 . . . . . . . . . . . . . . . 16 (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))) ∈ V
164162, 72, 163fvmpt 6952 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (𝐻‘(𝑘 + 1)) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
165112, 164syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐻‘(𝑘 + 1)) = (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))
166165oveq2d 7377 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (𝐻‘(𝑘 + 1))) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
167160, 166eqtrd 2773 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘(𝑘 + 1)) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))))
168158, 167eqeq12d 2749 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1)) ↔ ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1))))) = ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∩ (𝐹‘(𝑘 + 1)))))))
169103, 168syl5ibr 246 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘) → (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))
170102, 169anim12d 610 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1)))))
171170expcom 415 . . . . . . . 8 (𝑘 ∈ ℕ → (𝜑 → (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)) → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))))
172171a2d 29 . . . . . . 7 (𝑘 ∈ ℕ → ((𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))) → (𝜑 → ( 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))) = (seq1( + , 𝐻)‘(𝑘 + 1))))))
17339, 48, 57, 48, 81, 172nnind 12179 . . . . . 6 (𝑘 ∈ ℕ → (𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))))
174173impcom 409 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘)))
175174simprd 497 . . . 4 ((𝜑𝑘 ∈ ℕ) → (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) = (seq1( + , 𝐻)‘𝑘))
176175eqcomd 2739 . . 3 ((𝜑𝑘 ∈ ℕ) → (seq1( + , 𝐻)‘𝑘) = (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))))
177176oveq1d 7376 . 2 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ran 𝐹))) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 ran 𝐹))))
178174simpld 496 . . 3 ((𝜑𝑘 ∈ ℕ) → 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol)
179 mblsplit 24919 . . 3 (( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∈ dom vol ∧ 𝐸 ⊆ ℝ ∧ (vol*‘𝐸) ∈ ℝ) → (vol*‘𝐸) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
180178, 26, 4, 179syl3anc 1372 . 2 ((𝜑𝑘 ∈ ℕ) → (vol*‘𝐸) = ((vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛))) + (vol*‘(𝐸 𝑛 ∈ (1...𝑘)(𝐹𝑛)))))
18130, 177, 1803brtr4d 5141 1 ((𝜑𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ran 𝐹))) ≤ (vol*‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2940  wral 3061  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4286  {csn 4590   cuni 4869   ciun 4958  Disj wdisj 5074   class class class wbr 5109  cmpt 5192  dom cdm 5637  ran crn 5638   Fn wfn 6495  wf 6496  cfv 6500  (class class class)co 7361  cr 11058  1c1 11060   + caddc 11062   < clt 11197  cle 11198  cn 12161  cz 12507  cuz 12771  ...cfz 13433  seqcseq 13915  vol*covol 24849  volcvol 24850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-disj 5075  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-sup 9386  df-inf 9387  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-n0 12422  df-z 12508  df-uz 12772  df-q 12882  df-rp 12924  df-ioo 13277  df-ico 13279  df-icc 13280  df-fz 13434  df-fl 13706  df-seq 13916  df-exp 13977  df-cj 14993  df-re 14994  df-im 14995  df-sqrt 15129  df-abs 15130  df-ovol 24851  df-vol 24852
This theorem is referenced by:  voliunlem2  24938  voliunlem3  24939
  Copyright terms: Public domain W3C validator