Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝐽 ≈
2o) |
2 | | toponss 21984 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) |
3 | 2 | ad2ant2rl 745 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥 ∈ 𝐽)) → 𝑥 ⊆ 𝑋) |
4 | | simprl 767 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥 ∈ 𝐽)) → 𝑋 = ∅) |
5 | | sseq0 4330 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ⊆ 𝑋 ∧ 𝑋 = ∅) → 𝑥 = ∅) |
6 | 3, 4, 5 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥 ∈ 𝐽)) → 𝑥 = ∅) |
7 | | velsn 4574 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) |
8 | 6, 7 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥 ∈ 𝐽)) → 𝑥 ∈ {∅}) |
9 | 8 | expr 456 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → (𝑥 ∈ 𝐽 → 𝑥 ∈ {∅})) |
10 | 9 | ssrdv 3923 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 ⊆
{∅}) |
11 | | topontop 21970 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
12 | | 0opn 21961 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ Top → ∅
∈ 𝐽) |
13 | 11, 12 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽) |
14 | 13 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → ∅
∈ 𝐽) |
15 | 14 | snssd 4739 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → {∅}
⊆ 𝐽) |
16 | 10, 15 | eqssd 3934 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 = {∅}) |
17 | | 0ex 5226 |
. . . . . . . . . . . . 13
⊢ ∅
∈ V |
18 | 17 | ensn1 8761 |
. . . . . . . . . . . 12
⊢ {∅}
≈ 1o |
19 | 16, 18 | eqbrtrdi 5109 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 ≈
1o) |
20 | 19 | olcd 870 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → (𝐽 = ∅ ∨ 𝐽 ≈
1o)) |
21 | | sdom2en01 9989 |
. . . . . . . . . 10
⊢ (𝐽 ≺ 2o ↔
(𝐽 = ∅ ∨ 𝐽 ≈
1o)) |
22 | 20, 21 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 ≺
2o) |
23 | | sdomnen 8724 |
. . . . . . . . 9
⊢ (𝐽 ≺ 2o →
¬ 𝐽 ≈
2o) |
24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → ¬ 𝐽 ≈
2o) |
25 | 24 | ex 412 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (𝑋 = ∅ → ¬ 𝐽 ≈
2o)) |
26 | 25 | necon2ad 2957 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (𝐽 ≈ 2o →
𝑋 ≠
∅)) |
27 | 1, 26 | mpd 15 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝑋 ≠ ∅) |
28 | 27 | necomd 2998 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → ∅ ≠
𝑋) |
29 | 13 | adantr 480 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → ∅
∈ 𝐽) |
30 | | toponmax 21983 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
31 | 30 | adantr 480 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝑋 ∈ 𝐽) |
32 | | en2eqpr 9694 |
. . . . 5
⊢ ((𝐽 ≈ 2o ∧
∅ ∈ 𝐽 ∧
𝑋 ∈ 𝐽) → (∅ ≠ 𝑋 → 𝐽 = {∅, 𝑋})) |
33 | 1, 29, 31, 32 | syl3anc 1369 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (∅ ≠
𝑋 → 𝐽 = {∅, 𝑋})) |
34 | 28, 33 | mpd 15 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝐽 = {∅, 𝑋}) |
35 | 34, 27 | jca 511 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) |
36 | | simprl 767 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝐽 = {∅, 𝑋}) |
37 | | simprr 769 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝑋 ≠ ∅) |
38 | 37 | necomd 2998 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → ∅ ≠ 𝑋) |
39 | | pr2nelem 9691 |
. . . 4
⊢ ((∅
∈ V ∧ 𝑋 ∈
𝐽 ∧ ∅ ≠ 𝑋) → {∅, 𝑋} ≈
2o) |
40 | 17, 30, 38, 39 | mp3an2ani 1466 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → {∅, 𝑋} ≈
2o) |
41 | 36, 40 | eqbrtrd 5092 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝐽 ≈ 2o) |
42 | 35, 41 | impbida 797 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))) |