MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2top Structured version   Visualization version   GIF version

Theorem en2top 22872
Description: If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2top (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))

Proof of Theorem en2top
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝐽 ≈ 2o)
2 toponss 22814 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
32ad2ant2rl 749 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥𝑋)
4 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑋 = ∅)
5 sseq0 4366 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑋 = ∅) → 𝑥 = ∅)
63, 4, 5syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥 = ∅)
7 velsn 4605 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
86, 7sylibr 234 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥 ∈ {∅})
98expr 456 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → (𝑥𝐽𝑥 ∈ {∅}))
109ssrdv 3952 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 ⊆ {∅})
11 topontop 22800 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
12 0opn 22791 . . . . . . . . . . . . . . . 16 (𝐽 ∈ Top → ∅ ∈ 𝐽)
1311, 12syl 17 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽)
1413ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → ∅ ∈ 𝐽)
1514snssd 4773 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → {∅} ⊆ 𝐽)
1610, 15eqssd 3964 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 = {∅})
17 0ex 5262 . . . . . . . . . . . . 13 ∅ ∈ V
1817ensn1 8992 . . . . . . . . . . . 12 {∅} ≈ 1o
1916, 18eqbrtrdi 5146 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 ≈ 1o)
2019olcd 874 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → (𝐽 = ∅ ∨ 𝐽 ≈ 1o))
21 sdom2en01 10255 . . . . . . . . . 10 (𝐽 ≺ 2o ↔ (𝐽 = ∅ ∨ 𝐽 ≈ 1o))
2220, 21sylibr 234 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 ≺ 2o)
23 sdomnen 8952 . . . . . . . . 9 (𝐽 ≺ 2o → ¬ 𝐽 ≈ 2o)
2422, 23syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → ¬ 𝐽 ≈ 2o)
2524ex 412 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (𝑋 = ∅ → ¬ 𝐽 ≈ 2o))
2625necon2ad 2940 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (𝐽 ≈ 2o𝑋 ≠ ∅))
271, 26mpd 15 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝑋 ≠ ∅)
2827necomd 2980 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → ∅ ≠ 𝑋)
2913adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → ∅ ∈ 𝐽)
30 toponmax 22813 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
3130adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝑋𝐽)
32 en2eqpr 9960 . . . . 5 ((𝐽 ≈ 2o ∧ ∅ ∈ 𝐽𝑋𝐽) → (∅ ≠ 𝑋𝐽 = {∅, 𝑋}))
331, 29, 31, 32syl3anc 1373 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (∅ ≠ 𝑋𝐽 = {∅, 𝑋}))
3428, 33mpd 15 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝐽 = {∅, 𝑋})
3534, 27jca 511 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))
36 simprl 770 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝐽 = {∅, 𝑋})
37 simprr 772 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝑋 ≠ ∅)
3837necomd 2980 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → ∅ ≠ 𝑋)
39 enpr2 9955 . . . 4 ((∅ ∈ V ∧ 𝑋𝐽 ∧ ∅ ≠ 𝑋) → {∅, 𝑋} ≈ 2o)
4017, 30, 38, 39mp3an2ani 1470 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → {∅, 𝑋} ≈ 2o)
4136, 40eqbrtrd 5129 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝐽 ≈ 2o)
4235, 41impbida 800 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  wss 3914  c0 4296  {csn 4589  {cpr 4591   class class class wbr 5107  cfv 6511  1oc1o 8427  2oc2o 8428  cen 8915  csdm 8917  Topctop 22780  TopOnctopon 22797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-top 22781  df-topon 22798
This theorem is referenced by:  hmphindis  23684
  Copyright terms: Public domain W3C validator