MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2top Structured version   Visualization version   GIF version

Theorem en2top 23013
Description: If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2top (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))

Proof of Theorem en2top
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝐽 ≈ 2o)
2 toponss 22954 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
32ad2ant2rl 748 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥𝑋)
4 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑋 = ∅)
5 sseq0 4426 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑋 = ∅) → 𝑥 = ∅)
63, 4, 5syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥 = ∅)
7 velsn 4664 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
86, 7sylibr 234 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥 ∈ {∅})
98expr 456 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → (𝑥𝐽𝑥 ∈ {∅}))
109ssrdv 4014 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 ⊆ {∅})
11 topontop 22940 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
12 0opn 22931 . . . . . . . . . . . . . . . 16 (𝐽 ∈ Top → ∅ ∈ 𝐽)
1311, 12syl 17 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽)
1413ad2antrr 725 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → ∅ ∈ 𝐽)
1514snssd 4834 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → {∅} ⊆ 𝐽)
1610, 15eqssd 4026 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 = {∅})
17 0ex 5325 . . . . . . . . . . . . 13 ∅ ∈ V
1817ensn1 9082 . . . . . . . . . . . 12 {∅} ≈ 1o
1916, 18eqbrtrdi 5205 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 ≈ 1o)
2019olcd 873 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → (𝐽 = ∅ ∨ 𝐽 ≈ 1o))
21 sdom2en01 10371 . . . . . . . . . 10 (𝐽 ≺ 2o ↔ (𝐽 = ∅ ∨ 𝐽 ≈ 1o))
2220, 21sylibr 234 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 ≺ 2o)
23 sdomnen 9041 . . . . . . . . 9 (𝐽 ≺ 2o → ¬ 𝐽 ≈ 2o)
2422, 23syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → ¬ 𝐽 ≈ 2o)
2524ex 412 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (𝑋 = ∅ → ¬ 𝐽 ≈ 2o))
2625necon2ad 2961 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (𝐽 ≈ 2o𝑋 ≠ ∅))
271, 26mpd 15 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝑋 ≠ ∅)
2827necomd 3002 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → ∅ ≠ 𝑋)
2913adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → ∅ ∈ 𝐽)
30 toponmax 22953 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
3130adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝑋𝐽)
32 en2eqpr 10076 . . . . 5 ((𝐽 ≈ 2o ∧ ∅ ∈ 𝐽𝑋𝐽) → (∅ ≠ 𝑋𝐽 = {∅, 𝑋}))
331, 29, 31, 32syl3anc 1371 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (∅ ≠ 𝑋𝐽 = {∅, 𝑋}))
3428, 33mpd 15 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝐽 = {∅, 𝑋})
3534, 27jca 511 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))
36 simprl 770 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝐽 = {∅, 𝑋})
37 simprr 772 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝑋 ≠ ∅)
3837necomd 3002 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → ∅ ≠ 𝑋)
39 enpr2 10071 . . . 4 ((∅ ∈ V ∧ 𝑋𝐽 ∧ ∅ ≠ 𝑋) → {∅, 𝑋} ≈ 2o)
4017, 30, 38, 39mp3an2ani 1468 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → {∅, 𝑋} ≈ 2o)
4136, 40eqbrtrd 5188 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝐽 ≈ 2o)
4235, 41impbida 800 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  wss 3976  c0 4352  {csn 4648  {cpr 4650   class class class wbr 5166  cfv 6573  1oc1o 8515  2oc2o 8516  cen 9000  csdm 9002  Topctop 22920  TopOnctopon 22937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-top 22921  df-topon 22938
This theorem is referenced by:  hmphindis  23826
  Copyright terms: Public domain W3C validator