MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2top Structured version   Visualization version   GIF version

Theorem en2top 22895
Description: If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2top (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))

Proof of Theorem en2top
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝐽 ≈ 2o)
2 toponss 22837 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
32ad2ant2rl 749 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥𝑋)
4 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑋 = ∅)
5 sseq0 4348 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑋 = ∅) → 𝑥 = ∅)
63, 4, 5syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥 = ∅)
7 velsn 4587 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
86, 7sylibr 234 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥 ∈ {∅})
98expr 456 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → (𝑥𝐽𝑥 ∈ {∅}))
109ssrdv 3935 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 ⊆ {∅})
11 topontop 22823 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
12 0opn 22814 . . . . . . . . . . . . . . . 16 (𝐽 ∈ Top → ∅ ∈ 𝐽)
1311, 12syl 17 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽)
1413ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → ∅ ∈ 𝐽)
1514snssd 4756 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → {∅} ⊆ 𝐽)
1610, 15eqssd 3947 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 = {∅})
17 0ex 5240 . . . . . . . . . . . . 13 ∅ ∈ V
1817ensn1 8938 . . . . . . . . . . . 12 {∅} ≈ 1o
1916, 18eqbrtrdi 5125 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 ≈ 1o)
2019olcd 874 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → (𝐽 = ∅ ∨ 𝐽 ≈ 1o))
21 sdom2en01 10188 . . . . . . . . . 10 (𝐽 ≺ 2o ↔ (𝐽 = ∅ ∨ 𝐽 ≈ 1o))
2220, 21sylibr 234 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → 𝐽 ≺ 2o)
23 sdomnen 8898 . . . . . . . . 9 (𝐽 ≺ 2o → ¬ 𝐽 ≈ 2o)
2422, 23syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) ∧ 𝑋 = ∅) → ¬ 𝐽 ≈ 2o)
2524ex 412 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (𝑋 = ∅ → ¬ 𝐽 ≈ 2o))
2625necon2ad 2943 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (𝐽 ≈ 2o𝑋 ≠ ∅))
271, 26mpd 15 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝑋 ≠ ∅)
2827necomd 2983 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → ∅ ≠ 𝑋)
2913adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → ∅ ∈ 𝐽)
30 toponmax 22836 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
3130adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝑋𝐽)
32 en2eqpr 9893 . . . . 5 ((𝐽 ≈ 2o ∧ ∅ ∈ 𝐽𝑋𝐽) → (∅ ≠ 𝑋𝐽 = {∅, 𝑋}))
331, 29, 31, 32syl3anc 1373 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (∅ ≠ 𝑋𝐽 = {∅, 𝑋}))
3428, 33mpd 15 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → 𝐽 = {∅, 𝑋})
3534, 27jca 511 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2o) → (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))
36 simprl 770 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝐽 = {∅, 𝑋})
37 simprr 772 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝑋 ≠ ∅)
3837necomd 2983 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → ∅ ≠ 𝑋)
39 enpr2 9890 . . . 4 ((∅ ∈ V ∧ 𝑋𝐽 ∧ ∅ ≠ 𝑋) → {∅, 𝑋} ≈ 2o)
4017, 30, 38, 39mp3an2ani 1470 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → {∅, 𝑋} ≈ 2o)
4136, 40eqbrtrd 5108 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝐽 ≈ 2o)
4235, 41impbida 800 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  wss 3897  c0 4278  {csn 4571  {cpr 4573   class class class wbr 5086  cfv 6476  1oc1o 8373  2oc2o 8374  cen 8861  csdm 8863  Topctop 22803  TopOnctopon 22820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-om 7792  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9827  df-top 22804  df-topon 22821
This theorem is referenced by:  hmphindis  23707
  Copyright terms: Public domain W3C validator