MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvre Structured version   Visualization version   GIF version

Theorem dvcnvre 25931
Description: The derivative rule for inverse functions. If 𝐹 is a continuous and differentiable bijective function from 𝑋 to 𝑌 which never has derivative 0, then 𝐹 is also differentiable, and its derivative is the reciprocal of the derivative of 𝐹. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
Assertion
Ref Expression
dvcnvre (𝜑 → (ℝ D 𝐹) = (𝑥𝑌 ↦ (1 / ((ℝ D 𝐹)‘(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌

Proof of Theorem dvcnvre
Dummy variables 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2 tgioo4 24700 . 2 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3 reelprrecn 11167 . . 3 ℝ ∈ {ℝ, ℂ}
43a1i 11 . 2 (𝜑 → ℝ ∈ {ℝ, ℂ})
5 retop 24656 . . . . 5 (topGen‘ran (,)) ∈ Top
6 dvcnvre.1 . . . . . . 7 (𝜑𝐹:𝑋1-1-onto𝑌)
7 f1ofo 6810 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
8 forn 6778 . . . . . . 7 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
96, 7, 83syl 18 . . . . . 6 (𝜑 → ran 𝐹 = 𝑌)
10 dvcnvre.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋cn→ℝ))
11 cncff 24793 . . . . . . 7 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
12 frn 6698 . . . . . . 7 (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ)
1310, 11, 123syl 18 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ℝ)
149, 13eqsstrrd 3985 . . . . 5 (𝜑𝑌 ⊆ ℝ)
15 uniretop 24657 . . . . . 6 ℝ = (topGen‘ran (,))
1615ntrss2 22951 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ 𝑌 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝑌) ⊆ 𝑌)
175, 14, 16sylancr 587 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑌) ⊆ 𝑌)
18 f1ocnvfv2 7255 . . . . . 6 ((𝐹:𝑋1-1-onto𝑌𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
196, 18sylan 580 . . . . 5 ((𝜑𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
20 eqid 2730 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
2120rexmet 24686 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
22 dvcnvre.d . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
23 dvbsss 25810 . . . . . . . . . . . . 13 dom (ℝ D 𝐹) ⊆ ℝ
2423a1i 11 . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐹) ⊆ ℝ)
2522, 24eqsstrrd 3985 . . . . . . . . . . 11 (𝜑𝑋 ⊆ ℝ)
2615ntrss2 22951 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ 𝑋 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝑋) ⊆ 𝑋)
275, 25, 26sylancr 587 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑋) ⊆ 𝑋)
28 ax-resscn 11132 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
2928a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
3010, 11syl 17 . . . . . . . . . . . . 13 (𝜑𝐹:𝑋⟶ℝ)
31 fss 6707 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
3230, 28, 31sylancl 586 . . . . . . . . . . . 12 (𝜑𝐹:𝑋⟶ℂ)
3329, 32, 25, 2, 1dvbssntr 25808 . . . . . . . . . . 11 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
3422, 33eqsstrrd 3985 . . . . . . . . . 10 (𝜑𝑋 ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
3527, 34eqssd 3967 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋)
3615isopn3 22960 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ 𝑋 ⊆ ℝ) → (𝑋 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋))
375, 25, 36sylancr 587 . . . . . . . . 9 (𝜑 → (𝑋 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋))
3835, 37mpbird 257 . . . . . . . 8 (𝜑𝑋 ∈ (topGen‘ran (,)))
39 f1ocnv 6815 . . . . . . . . . 10 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
40 f1of 6803 . . . . . . . . . 10 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
416, 39, 403syl 18 . . . . . . . . 9 (𝜑𝐹:𝑌𝑋)
4241ffvelcdmda 7059 . . . . . . . 8 ((𝜑𝑥𝑌) → (𝐹𝑥) ∈ 𝑋)
43 eqid 2730 . . . . . . . . . 10 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4420, 43tgioo 24691 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4544mopni2 24388 . . . . . . . 8 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝑋 ∈ (topGen‘ran (,)) ∧ (𝐹𝑥) ∈ 𝑋) → ∃𝑟 ∈ ℝ+ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
4621, 38, 42, 45mp3an2ani 1470 . . . . . . 7 ((𝜑𝑥𝑌) → ∃𝑟 ∈ ℝ+ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
4710ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝐹 ∈ (𝑋cn→ℝ))
4822ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → dom (ℝ D 𝐹) = 𝑋)
49 dvcnvre.z . . . . . . . . 9 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
5049ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ¬ 0 ∈ ran (ℝ D 𝐹))
516ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝐹:𝑋1-1-onto𝑌)
5242adantr 480 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝐹𝑥) ∈ 𝑋)
53 rphalfcl 12987 . . . . . . . . 9 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
5453ad2antrl 728 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑟 / 2) ∈ ℝ+)
5525ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝑋 ⊆ ℝ)
5655, 52sseldd 3950 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝐹𝑥) ∈ ℝ)
5754rpred 13002 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑟 / 2) ∈ ℝ)
5856, 57resubcld 11613 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ)
5956, 57readdcld 11210 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ)
60 elicc2 13379 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ ∧ ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))))
6158, 59, 60syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))))
6261biimpa 476 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2))))
6362simp1d 1142 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ∈ ℝ)
6456adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝐹𝑥) ∈ ℝ)
65 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑟 ∈ ℝ+)
6665rpred 13002 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑟 ∈ ℝ)
6764, 66resubcld 11613 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) ∈ ℝ)
6858adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ)
6965, 53syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ+)
7069rpred 13002 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ)
71 rphalflt 12989 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
7265, 71syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) < 𝑟)
7370, 66, 64, 72ltsub2dd 11798 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) < ((𝐹𝑥) − (𝑟 / 2)))
7462simp2d 1143 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦)
7567, 68, 63, 73, 74ltletrd 11341 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) < 𝑦)
7659adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ)
7764, 66readdcld 11210 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + 𝑟) ∈ ℝ)
7862simp3d 1144 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))
7970, 66, 64, 72ltadd2dd 11340 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + (𝑟 / 2)) < ((𝐹𝑥) + 𝑟))
8063, 76, 77, 78, 79lelttrd 11339 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 < ((𝐹𝑥) + 𝑟))
8167rexrd 11231 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) ∈ ℝ*)
8277rexrd 11231 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + 𝑟) ∈ ℝ*)
83 elioo2 13354 . . . . . . . . . . . . . 14 ((((𝐹𝑥) − 𝑟) ∈ ℝ* ∧ ((𝐹𝑥) + 𝑟) ∈ ℝ*) → (𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − 𝑟) < 𝑦𝑦 < ((𝐹𝑥) + 𝑟))))
8481, 82, 83syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − 𝑟) < 𝑦𝑦 < ((𝐹𝑥) + 𝑟))))
8563, 75, 80, 84mpbir3and 1343 . . . . . . . . . . . 12 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
8685ex 412 . . . . . . . . . . 11 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) → 𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟))))
8786ssrdv 3955 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
88 rpre 12967 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
8988ad2antrl 728 . . . . . . . . . . 11 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝑟 ∈ ℝ)
9020bl2ioo 24687 . . . . . . . . . . 11 (((𝐹𝑥) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
9156, 89, 90syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
9287, 91sseqtrrd 3987 . . . . . . . . 9 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟))
93 simprr 772 . . . . . . . . 9 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
9492, 93sstrd 3960 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ 𝑋)
95 eqid 2730 . . . . . . . 8 (topGen‘ran (,)) = (topGen‘ran (,))
96 eqid 2730 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋)
97 eqid 2730 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑌) = ((TopOpen‘ℂfld) ↾t 𝑌)
9847, 48, 50, 51, 52, 54, 94, 95, 1, 96, 97dvcnvrelem2 25930 . . . . . . 7 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌) ∧ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥)))))
9946, 98rexlimddv 3141 . . . . . 6 ((𝜑𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌) ∧ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥)))))
10099simpld 494 . . . . 5 ((𝜑𝑥𝑌) → (𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌))
10119, 100eqeltrrd 2830 . . . 4 ((𝜑𝑥𝑌) → 𝑥 ∈ ((int‘(topGen‘ran (,)))‘𝑌))
10217, 101eqelssd 3971 . . 3 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌)
10315isopn3 22960 . . . 4 (((topGen‘ran (,)) ∈ Top ∧ 𝑌 ⊆ ℝ) → (𝑌 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌))
1045, 14, 103sylancr 587 . . 3 (𝜑 → (𝑌 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌))
105102, 104mpbird 257 . 2 (𝜑𝑌 ∈ (topGen‘ran (,)))
10699simprd 495 . . . . . 6 ((𝜑𝑥𝑌) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥))))
10719fveq2d 6865 . . . . . 6 ((𝜑𝑥𝑌) → ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥))) = ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
108106, 107eleqtrd 2831 . . . . 5 ((𝜑𝑥𝑌) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
109108ralrimiva 3126 . . . 4 (𝜑 → ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
1101cnfldtopon 24677 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
11114, 28sstrdi 3962 . . . . . 6 (𝜑𝑌 ⊆ ℂ)
112 resttopon 23055 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑌 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌))
113110, 111, 112sylancr 587 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌))
11425, 28sstrdi 3962 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
115 resttopon 23055 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋))
116110, 114, 115sylancr 587 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋))
117 cncnp 23174 . . . . 5 ((((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌) ∧ ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))))
118113, 116, 117syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))))
11941, 109, 118mpbir2and 713 . . 3 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
1201, 97, 96cncfcn 24810 . . . 4 ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌cn𝑋) = (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
121111, 114, 120syl2anc 584 . . 3 (𝜑 → (𝑌cn𝑋) = (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
122119, 121eleqtrrd 2832 . 2 (𝜑𝐹 ∈ (𝑌cn𝑋))
1231, 2, 4, 105, 6, 122, 22, 49dvcnv 25888 1 (𝜑 → (ℝ D 𝐹) = (𝑥𝑌 ↦ (1 / ((ℝ D 𝐹)‘(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917  {cpr 4594   class class class wbr 5110  cmpt 5191   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  ccom 5645  wf 6510  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  2c2 12248  +crp 12958  (,)cioo 13313  [,]cicc 13316  abscabs 15207  t crest 17390  TopOpenctopn 17391  topGenctg 17407  ∞Metcxmet 21256  ballcbl 21258  MetOpencmopn 21261  fldccnfld 21271  Topctop 22787  TopOnctopon 22804  intcnt 22911   Cn ccn 23118   CnP ccnp 23119  cnccncf 24776   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  dvrelog  26553
  Copyright terms: Public domain W3C validator