Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
2 | 1 | tgioo2 23872 |
. 2
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
3 | | reelprrecn 10894 |
. . 3
⊢ ℝ
∈ {ℝ, ℂ} |
4 | 3 | a1i 11 |
. 2
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
5 | | retop 23831 |
. . . . 5
⊢
(topGen‘ran (,)) ∈ Top |
6 | | dvcnvre.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) |
7 | | f1ofo 6707 |
. . . . . . 7
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋–onto→𝑌) |
8 | | forn 6675 |
. . . . . . 7
⊢ (𝐹:𝑋–onto→𝑌 → ran 𝐹 = 𝑌) |
9 | 6, 7, 8 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ran 𝐹 = 𝑌) |
10 | | dvcnvre.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℝ)) |
11 | | cncff 23962 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑋–cn→ℝ) → 𝐹:𝑋⟶ℝ) |
12 | | frn 6591 |
. . . . . . 7
⊢ (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ) |
13 | 10, 11, 12 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
14 | 9, 13 | eqsstrrd 3956 |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ ℝ) |
15 | | uniretop 23832 |
. . . . . 6
⊢ ℝ =
∪ (topGen‘ran (,)) |
16 | 15 | ntrss2 22116 |
. . . . 5
⊢
(((topGen‘ran (,)) ∈ Top ∧ 𝑌 ⊆ ℝ) →
((int‘(topGen‘ran (,)))‘𝑌) ⊆ 𝑌) |
17 | 5, 14, 16 | sylancr 586 |
. . . 4
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘𝑌) ⊆ 𝑌) |
18 | | f1ocnvfv2 7130 |
. . . . . 6
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
19 | 6, 18 | sylan 579 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
20 | | eqid 2738 |
. . . . . . . . 9
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − )
↾ (ℝ × ℝ)) |
21 | 20 | rexmet 23860 |
. . . . . . . 8
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) |
22 | | dvcnvre.d |
. . . . . . . . . . . 12
⊢ (𝜑 → dom (ℝ D 𝐹) = 𝑋) |
23 | | dvbsss 24971 |
. . . . . . . . . . . . 13
⊢ dom
(ℝ D 𝐹) ⊆
ℝ |
24 | 23 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom (ℝ D 𝐹) ⊆
ℝ) |
25 | 22, 24 | eqsstrrd 3956 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ⊆ ℝ) |
26 | 15 | ntrss2 22116 |
. . . . . . . . . . 11
⊢
(((topGen‘ran (,)) ∈ Top ∧ 𝑋 ⊆ ℝ) →
((int‘(topGen‘ran (,)))‘𝑋) ⊆ 𝑋) |
27 | 5, 25, 26 | sylancr 586 |
. . . . . . . . . 10
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘𝑋) ⊆ 𝑋) |
28 | | ax-resscn 10859 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
29 | 28 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℝ ⊆
ℂ) |
30 | 10, 11 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
31 | | fss 6601 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:𝑋⟶ℂ) |
32 | 30, 28, 31 | sylancl 585 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
33 | 29, 32, 25, 2, 1 | dvbssntr 24969 |
. . . . . . . . . . 11
⊢ (𝜑 → dom (ℝ D 𝐹) ⊆
((int‘(topGen‘ran (,)))‘𝑋)) |
34 | 22, 33 | eqsstrrd 3956 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ⊆ ((int‘(topGen‘ran
(,)))‘𝑋)) |
35 | 27, 34 | eqssd 3934 |
. . . . . . . . 9
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘𝑋) = 𝑋) |
36 | 15 | isopn3 22125 |
. . . . . . . . . 10
⊢
(((topGen‘ran (,)) ∈ Top ∧ 𝑋 ⊆ ℝ) → (𝑋 ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘𝑋) = 𝑋)) |
37 | 5, 25, 36 | sylancr 586 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘𝑋) = 𝑋)) |
38 | 35, 37 | mpbird 256 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ (topGen‘ran
(,))) |
39 | | f1ocnv 6712 |
. . . . . . . . . 10
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) |
40 | | f1of 6700 |
. . . . . . . . . 10
⊢ (◡𝐹:𝑌–1-1-onto→𝑋 → ◡𝐹:𝑌⟶𝑋) |
41 | 6, 39, 40 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → ◡𝐹:𝑌⟶𝑋) |
42 | 41 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹‘𝑥) ∈ 𝑋) |
43 | | eqid 2738 |
. . . . . . . . . 10
⊢
(MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) |
44 | 20, 43 | tgioo 23865 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾
(ℝ × ℝ))) |
45 | 44 | mopni2 23555 |
. . . . . . . 8
⊢ ((((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) ∧ 𝑋 ∈ (topGen‘ran (,)) ∧ (◡𝐹‘𝑥) ∈ 𝑋) → ∃𝑟 ∈ ℝ+ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋) |
46 | 21, 38, 42, 45 | mp3an2ani 1466 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ∃𝑟 ∈ ℝ+ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋) |
47 | 10 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝐹 ∈ (𝑋–cn→ℝ)) |
48 | 22 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → dom (ℝ D 𝐹) = 𝑋) |
49 | | dvcnvre.z |
. . . . . . . . 9
⊢ (𝜑 → ¬ 0 ∈ ran
(ℝ D 𝐹)) |
50 | 49 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ¬ 0 ∈ ran (ℝ D
𝐹)) |
51 | 6 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝐹:𝑋–1-1-onto→𝑌) |
52 | 42 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (◡𝐹‘𝑥) ∈ 𝑋) |
53 | | rphalfcl 12686 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℝ+
→ (𝑟 / 2) ∈
ℝ+) |
54 | 53 | ad2antrl 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑟 / 2) ∈
ℝ+) |
55 | 25 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝑋 ⊆ ℝ) |
56 | 55, 52 | sseldd 3918 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (◡𝐹‘𝑥) ∈ ℝ) |
57 | 54 | rpred 12701 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑟 / 2) ∈ ℝ) |
58 | 56, 57 | resubcld 11333 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((◡𝐹‘𝑥) − (𝑟 / 2)) ∈ ℝ) |
59 | 56, 57 | readdcld 10935 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((◡𝐹‘𝑥) + (𝑟 / 2)) ∈ ℝ) |
60 | | elicc2 13073 |
. . . . . . . . . . . . . . . 16
⊢ ((((◡𝐹‘𝑥) − (𝑟 / 2)) ∈ ℝ ∧ ((◡𝐹‘𝑥) + (𝑟 / 2)) ∈ ℝ) → (𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2))) ↔ (𝑦 ∈ ℝ ∧ ((◡𝐹‘𝑥) − (𝑟 / 2)) ≤ 𝑦 ∧ 𝑦 ≤ ((◡𝐹‘𝑥) + (𝑟 / 2))))) |
61 | 58, 59, 60 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2))) ↔ (𝑦 ∈ ℝ ∧ ((◡𝐹‘𝑥) − (𝑟 / 2)) ≤ 𝑦 ∧ 𝑦 ≤ ((◡𝐹‘𝑥) + (𝑟 / 2))))) |
62 | 61 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → (𝑦 ∈ ℝ ∧ ((◡𝐹‘𝑥) − (𝑟 / 2)) ≤ 𝑦 ∧ 𝑦 ≤ ((◡𝐹‘𝑥) + (𝑟 / 2)))) |
63 | 62 | simp1d 1140 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → 𝑦 ∈ ℝ) |
64 | 56 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → (◡𝐹‘𝑥) ∈ ℝ) |
65 | | simplrl 773 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → 𝑟 ∈ ℝ+) |
66 | 65 | rpred 12701 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → 𝑟 ∈ ℝ) |
67 | 64, 66 | resubcld 11333 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → ((◡𝐹‘𝑥) − 𝑟) ∈ ℝ) |
68 | 58 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → ((◡𝐹‘𝑥) − (𝑟 / 2)) ∈ ℝ) |
69 | 65, 53 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → (𝑟 / 2) ∈
ℝ+) |
70 | 69 | rpred 12701 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ) |
71 | | rphalflt 12688 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ ℝ+
→ (𝑟 / 2) < 𝑟) |
72 | 65, 71 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → (𝑟 / 2) < 𝑟) |
73 | 70, 66, 64, 72 | ltsub2dd 11518 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → ((◡𝐹‘𝑥) − 𝑟) < ((◡𝐹‘𝑥) − (𝑟 / 2))) |
74 | 62 | simp2d 1141 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → ((◡𝐹‘𝑥) − (𝑟 / 2)) ≤ 𝑦) |
75 | 67, 68, 63, 73, 74 | ltletrd 11065 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → ((◡𝐹‘𝑥) − 𝑟) < 𝑦) |
76 | 59 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → ((◡𝐹‘𝑥) + (𝑟 / 2)) ∈ ℝ) |
77 | 64, 66 | readdcld 10935 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → ((◡𝐹‘𝑥) + 𝑟) ∈ ℝ) |
78 | 62 | simp3d 1142 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → 𝑦 ≤ ((◡𝐹‘𝑥) + (𝑟 / 2))) |
79 | 70, 66, 64, 72 | ltadd2dd 11064 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → ((◡𝐹‘𝑥) + (𝑟 / 2)) < ((◡𝐹‘𝑥) + 𝑟)) |
80 | 63, 76, 77, 78, 79 | lelttrd 11063 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → 𝑦 < ((◡𝐹‘𝑥) + 𝑟)) |
81 | 67 | rexrd 10956 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → ((◡𝐹‘𝑥) − 𝑟) ∈
ℝ*) |
82 | 77 | rexrd 10956 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → ((◡𝐹‘𝑥) + 𝑟) ∈
ℝ*) |
83 | | elioo2 13049 |
. . . . . . . . . . . . . 14
⊢ ((((◡𝐹‘𝑥) − 𝑟) ∈ ℝ* ∧ ((◡𝐹‘𝑥) + 𝑟) ∈ ℝ*) → (𝑦 ∈ (((◡𝐹‘𝑥) − 𝑟)(,)((◡𝐹‘𝑥) + 𝑟)) ↔ (𝑦 ∈ ℝ ∧ ((◡𝐹‘𝑥) − 𝑟) < 𝑦 ∧ 𝑦 < ((◡𝐹‘𝑥) + 𝑟)))) |
84 | 81, 82, 83 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → (𝑦 ∈ (((◡𝐹‘𝑥) − 𝑟)(,)((◡𝐹‘𝑥) + 𝑟)) ↔ (𝑦 ∈ ℝ ∧ ((◡𝐹‘𝑥) − 𝑟) < 𝑦 ∧ 𝑦 < ((◡𝐹‘𝑥) + 𝑟)))) |
85 | 63, 75, 80, 84 | mpbir3and 1340 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2)))) → 𝑦 ∈ (((◡𝐹‘𝑥) − 𝑟)(,)((◡𝐹‘𝑥) + 𝑟))) |
86 | 85 | ex 412 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑦 ∈ (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2))) → 𝑦 ∈ (((◡𝐹‘𝑥) − 𝑟)(,)((◡𝐹‘𝑥) + 𝑟)))) |
87 | 86 | ssrdv 3923 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2))) ⊆ (((◡𝐹‘𝑥) − 𝑟)(,)((◡𝐹‘𝑥) + 𝑟))) |
88 | | rpre 12667 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ) |
89 | 88 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝑟 ∈ ℝ) |
90 | 20 | bl2ioo 23861 |
. . . . . . . . . . 11
⊢ (((◡𝐹‘𝑥) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) = (((◡𝐹‘𝑥) − 𝑟)(,)((◡𝐹‘𝑥) + 𝑟))) |
91 | 56, 89, 90 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) = (((◡𝐹‘𝑥) − 𝑟)(,)((◡𝐹‘𝑥) + 𝑟))) |
92 | 87, 91 | sseqtrrd 3958 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2))) ⊆ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟)) |
93 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋) |
94 | 92, 93 | sstrd 3927 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((◡𝐹‘𝑥) − (𝑟 / 2))[,]((◡𝐹‘𝑥) + (𝑟 / 2))) ⊆ 𝑋) |
95 | | eqid 2738 |
. . . . . . . 8
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
96 | | eqid 2738 |
. . . . . . . 8
⊢
((TopOpen‘ℂfld) ↾t 𝑋) =
((TopOpen‘ℂfld) ↾t 𝑋) |
97 | | eqid 2738 |
. . . . . . . 8
⊢
((TopOpen‘ℂfld) ↾t 𝑌) =
((TopOpen‘ℂfld) ↾t 𝑌) |
98 | 47, 48, 50, 51, 52, 54, 94, 95, 1, 96, 97 | dvcnvrelem2 25087 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((◡𝐹‘𝑥)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹‘(◡𝐹‘𝑥)) ∈ ((int‘(topGen‘ran
(,)))‘𝑌) ∧ ◡𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld)
↾t 𝑋))‘(𝐹‘(◡𝐹‘𝑥))))) |
99 | 46, 98 | rexlimddv 3219 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ((𝐹‘(◡𝐹‘𝑥)) ∈ ((int‘(topGen‘ran
(,)))‘𝑌) ∧ ◡𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld)
↾t 𝑋))‘(𝐹‘(◡𝐹‘𝑥))))) |
100 | 99 | simpld 494 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) ∈ ((int‘(topGen‘ran
(,)))‘𝑌)) |
101 | 19, 100 | eqeltrrd 2840 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ ((int‘(topGen‘ran
(,)))‘𝑌)) |
102 | 17, 101 | eqelssd 3938 |
. . 3
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘𝑌) = 𝑌) |
103 | 15 | isopn3 22125 |
. . . 4
⊢
(((topGen‘ran (,)) ∈ Top ∧ 𝑌 ⊆ ℝ) → (𝑌 ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘𝑌) = 𝑌)) |
104 | 5, 14, 103 | sylancr 586 |
. . 3
⊢ (𝜑 → (𝑌 ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘𝑌) = 𝑌)) |
105 | 102, 104 | mpbird 256 |
. 2
⊢ (𝜑 → 𝑌 ∈ (topGen‘ran
(,))) |
106 | 99 | simprd 495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ◡𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld)
↾t 𝑋))‘(𝐹‘(◡𝐹‘𝑥)))) |
107 | 19 | fveq2d 6760 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) →
((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld)
↾t 𝑋))‘(𝐹‘(◡𝐹‘𝑥))) =
((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld)
↾t 𝑋))‘𝑥)) |
108 | 106, 107 | eleqtrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → ◡𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld)
↾t 𝑋))‘𝑥)) |
109 | 108 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑌 ◡𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld)
↾t 𝑋))‘𝑥)) |
110 | 1 | cnfldtopon 23852 |
. . . . . 6
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
111 | 14, 28 | sstrdi 3929 |
. . . . . 6
⊢ (𝜑 → 𝑌 ⊆ ℂ) |
112 | | resttopon 22220 |
. . . . . 6
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ 𝑌 ⊆ ℂ)
→ ((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌)) |
113 | 110, 111,
112 | sylancr 586 |
. . . . 5
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌)) |
114 | 25, 28 | sstrdi 3929 |
. . . . . 6
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
115 | | resttopon 22220 |
. . . . . 6
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ 𝑋 ⊆ ℂ)
→ ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋)) |
116 | 110, 114,
115 | sylancr 586 |
. . . . 5
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋)) |
117 | | cncnp 22339 |
. . . . 5
⊢
((((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌) ∧
((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋)) → (◡𝐹 ∈
(((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld)
↾t 𝑋))
↔ (◡𝐹:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑌 ◡𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld)
↾t 𝑋))‘𝑥)))) |
118 | 113, 116,
117 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (◡𝐹 ∈
(((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld)
↾t 𝑋))
↔ (◡𝐹:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑌 ◡𝐹 ∈
((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld)
↾t 𝑋))‘𝑥)))) |
119 | 41, 109, 118 | mpbir2and 709 |
. . 3
⊢ (𝜑 → ◡𝐹 ∈
(((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld)
↾t 𝑋))) |
120 | 1, 97, 96 | cncfcn 23979 |
. . . 4
⊢ ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌–cn→𝑋) = (((TopOpen‘ℂfld)
↾t 𝑌) Cn
((TopOpen‘ℂfld) ↾t 𝑋))) |
121 | 111, 114,
120 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝑌–cn→𝑋) = (((TopOpen‘ℂfld)
↾t 𝑌) Cn
((TopOpen‘ℂfld) ↾t 𝑋))) |
122 | 119, 121 | eleqtrrd 2842 |
. 2
⊢ (𝜑 → ◡𝐹 ∈ (𝑌–cn→𝑋)) |
123 | 1, 2, 4, 105, 6, 122, 22, 49 | dvcnv 25046 |
1
⊢ (𝜑 → (ℝ D ◡𝐹) = (𝑥 ∈ 𝑌 ↦ (1 / ((ℝ D 𝐹)‘(◡𝐹‘𝑥))))) |