MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvre Structured version   Visualization version   GIF version

Theorem dvcnvre 25420
Description: The derivative rule for inverse functions. If 𝐹 is a continuous and differentiable bijective function from 𝑋 to 𝑌 which never has derivative 0, then 𝐹 is also differentiable, and its derivative is the reciprocal of the derivative of 𝐹. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
Assertion
Ref Expression
dvcnvre (𝜑 → (ℝ D 𝐹) = (𝑥𝑌 ↦ (1 / ((ℝ D 𝐹)‘(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌

Proof of Theorem dvcnvre
Dummy variables 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21tgioo2 24203 . 2 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3 reelprrecn 11152 . . 3 ℝ ∈ {ℝ, ℂ}
43a1i 11 . 2 (𝜑 → ℝ ∈ {ℝ, ℂ})
5 retop 24162 . . . . 5 (topGen‘ran (,)) ∈ Top
6 dvcnvre.1 . . . . . . 7 (𝜑𝐹:𝑋1-1-onto𝑌)
7 f1ofo 6796 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
8 forn 6764 . . . . . . 7 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
96, 7, 83syl 18 . . . . . 6 (𝜑 → ran 𝐹 = 𝑌)
10 dvcnvre.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋cn→ℝ))
11 cncff 24293 . . . . . . 7 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
12 frn 6680 . . . . . . 7 (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ)
1310, 11, 123syl 18 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ℝ)
149, 13eqsstrrd 3986 . . . . 5 (𝜑𝑌 ⊆ ℝ)
15 uniretop 24163 . . . . . 6 ℝ = (topGen‘ran (,))
1615ntrss2 22445 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ 𝑌 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝑌) ⊆ 𝑌)
175, 14, 16sylancr 587 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑌) ⊆ 𝑌)
18 f1ocnvfv2 7228 . . . . . 6 ((𝐹:𝑋1-1-onto𝑌𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
196, 18sylan 580 . . . . 5 ((𝜑𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
20 eqid 2731 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
2120rexmet 24191 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
22 dvcnvre.d . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
23 dvbsss 25303 . . . . . . . . . . . . 13 dom (ℝ D 𝐹) ⊆ ℝ
2423a1i 11 . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐹) ⊆ ℝ)
2522, 24eqsstrrd 3986 . . . . . . . . . . 11 (𝜑𝑋 ⊆ ℝ)
2615ntrss2 22445 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ 𝑋 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝑋) ⊆ 𝑋)
275, 25, 26sylancr 587 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑋) ⊆ 𝑋)
28 ax-resscn 11117 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
2928a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
3010, 11syl 17 . . . . . . . . . . . . 13 (𝜑𝐹:𝑋⟶ℝ)
31 fss 6690 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
3230, 28, 31sylancl 586 . . . . . . . . . . . 12 (𝜑𝐹:𝑋⟶ℂ)
3329, 32, 25, 2, 1dvbssntr 25301 . . . . . . . . . . 11 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
3422, 33eqsstrrd 3986 . . . . . . . . . 10 (𝜑𝑋 ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
3527, 34eqssd 3964 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋)
3615isopn3 22454 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ 𝑋 ⊆ ℝ) → (𝑋 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋))
375, 25, 36sylancr 587 . . . . . . . . 9 (𝜑 → (𝑋 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋))
3835, 37mpbird 256 . . . . . . . 8 (𝜑𝑋 ∈ (topGen‘ran (,)))
39 f1ocnv 6801 . . . . . . . . . 10 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
40 f1of 6789 . . . . . . . . . 10 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
416, 39, 403syl 18 . . . . . . . . 9 (𝜑𝐹:𝑌𝑋)
4241ffvelcdmda 7040 . . . . . . . 8 ((𝜑𝑥𝑌) → (𝐹𝑥) ∈ 𝑋)
43 eqid 2731 . . . . . . . . . 10 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4420, 43tgioo 24196 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4544mopni2 23886 . . . . . . . 8 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝑋 ∈ (topGen‘ran (,)) ∧ (𝐹𝑥) ∈ 𝑋) → ∃𝑟 ∈ ℝ+ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
4621, 38, 42, 45mp3an2ani 1468 . . . . . . 7 ((𝜑𝑥𝑌) → ∃𝑟 ∈ ℝ+ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
4710ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝐹 ∈ (𝑋cn→ℝ))
4822ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → dom (ℝ D 𝐹) = 𝑋)
49 dvcnvre.z . . . . . . . . 9 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
5049ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ¬ 0 ∈ ran (ℝ D 𝐹))
516ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝐹:𝑋1-1-onto𝑌)
5242adantr 481 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝐹𝑥) ∈ 𝑋)
53 rphalfcl 12951 . . . . . . . . 9 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
5453ad2antrl 726 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑟 / 2) ∈ ℝ+)
5525ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝑋 ⊆ ℝ)
5655, 52sseldd 3948 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝐹𝑥) ∈ ℝ)
5754rpred 12966 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑟 / 2) ∈ ℝ)
5856, 57resubcld 11592 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ)
5956, 57readdcld 11193 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ)
60 elicc2 13339 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ ∧ ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))))
6158, 59, 60syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))))
6261biimpa 477 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2))))
6362simp1d 1142 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ∈ ℝ)
6456adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝐹𝑥) ∈ ℝ)
65 simplrl 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑟 ∈ ℝ+)
6665rpred 12966 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑟 ∈ ℝ)
6764, 66resubcld 11592 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) ∈ ℝ)
6858adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ)
6965, 53syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ+)
7069rpred 12966 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ)
71 rphalflt 12953 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
7265, 71syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) < 𝑟)
7370, 66, 64, 72ltsub2dd 11777 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) < ((𝐹𝑥) − (𝑟 / 2)))
7462simp2d 1143 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦)
7567, 68, 63, 73, 74ltletrd 11324 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) < 𝑦)
7659adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ)
7764, 66readdcld 11193 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + 𝑟) ∈ ℝ)
7862simp3d 1144 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))
7970, 66, 64, 72ltadd2dd 11323 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + (𝑟 / 2)) < ((𝐹𝑥) + 𝑟))
8063, 76, 77, 78, 79lelttrd 11322 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 < ((𝐹𝑥) + 𝑟))
8167rexrd 11214 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) ∈ ℝ*)
8277rexrd 11214 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + 𝑟) ∈ ℝ*)
83 elioo2 13315 . . . . . . . . . . . . . 14 ((((𝐹𝑥) − 𝑟) ∈ ℝ* ∧ ((𝐹𝑥) + 𝑟) ∈ ℝ*) → (𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − 𝑟) < 𝑦𝑦 < ((𝐹𝑥) + 𝑟))))
8481, 82, 83syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − 𝑟) < 𝑦𝑦 < ((𝐹𝑥) + 𝑟))))
8563, 75, 80, 84mpbir3and 1342 . . . . . . . . . . . 12 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
8685ex 413 . . . . . . . . . . 11 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) → 𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟))))
8786ssrdv 3953 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
88 rpre 12932 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
8988ad2antrl 726 . . . . . . . . . . 11 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝑟 ∈ ℝ)
9020bl2ioo 24192 . . . . . . . . . . 11 (((𝐹𝑥) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
9156, 89, 90syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
9287, 91sseqtrrd 3988 . . . . . . . . 9 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟))
93 simprr 771 . . . . . . . . 9 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
9492, 93sstrd 3957 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ 𝑋)
95 eqid 2731 . . . . . . . 8 (topGen‘ran (,)) = (topGen‘ran (,))
96 eqid 2731 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋)
97 eqid 2731 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑌) = ((TopOpen‘ℂfld) ↾t 𝑌)
9847, 48, 50, 51, 52, 54, 94, 95, 1, 96, 97dvcnvrelem2 25419 . . . . . . 7 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌) ∧ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥)))))
9946, 98rexlimddv 3154 . . . . . 6 ((𝜑𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌) ∧ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥)))))
10099simpld 495 . . . . 5 ((𝜑𝑥𝑌) → (𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌))
10119, 100eqeltrrd 2833 . . . 4 ((𝜑𝑥𝑌) → 𝑥 ∈ ((int‘(topGen‘ran (,)))‘𝑌))
10217, 101eqelssd 3968 . . 3 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌)
10315isopn3 22454 . . . 4 (((topGen‘ran (,)) ∈ Top ∧ 𝑌 ⊆ ℝ) → (𝑌 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌))
1045, 14, 103sylancr 587 . . 3 (𝜑 → (𝑌 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌))
105102, 104mpbird 256 . 2 (𝜑𝑌 ∈ (topGen‘ran (,)))
10699simprd 496 . . . . . 6 ((𝜑𝑥𝑌) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥))))
10719fveq2d 6851 . . . . . 6 ((𝜑𝑥𝑌) → ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥))) = ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
108106, 107eleqtrd 2834 . . . . 5 ((𝜑𝑥𝑌) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
109108ralrimiva 3139 . . . 4 (𝜑 → ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
1101cnfldtopon 24183 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
11114, 28sstrdi 3959 . . . . . 6 (𝜑𝑌 ⊆ ℂ)
112 resttopon 22549 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑌 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌))
113110, 111, 112sylancr 587 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌))
11425, 28sstrdi 3959 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
115 resttopon 22549 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋))
116110, 114, 115sylancr 587 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋))
117 cncnp 22668 . . . . 5 ((((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌) ∧ ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))))
118113, 116, 117syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))))
11941, 109, 118mpbir2and 711 . . 3 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
1201, 97, 96cncfcn 24310 . . . 4 ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌cn𝑋) = (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
121111, 114, 120syl2anc 584 . . 3 (𝜑 → (𝑌cn𝑋) = (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
122119, 121eleqtrrd 2835 . 2 (𝜑𝐹 ∈ (𝑌cn𝑋))
1231, 2, 4, 105, 6, 122, 22, 49dvcnv 25378 1 (𝜑 → (ℝ D 𝐹) = (𝑥𝑌 ↦ (1 / ((ℝ D 𝐹)‘(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060  wrex 3069  wss 3913  {cpr 4593   class class class wbr 5110  cmpt 5193   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  ccom 5642  wf 6497  ontowfo 6499  1-1-ontowf1o 6500  cfv 6501  (class class class)co 7362  cc 11058  cr 11059  0cc0 11060  1c1 11061   + caddc 11063  *cxr 11197   < clt 11198  cle 11199  cmin 11394   / cdiv 11821  2c2 12217  +crp 12924  (,)cioo 13274  [,]cicc 13277  abscabs 15131  t crest 17316  TopOpenctopn 17317  topGenctg 17333  ∞Metcxmet 20818  ballcbl 20820  MetOpencmopn 20823  fldccnfld 20833  Topctop 22279  TopOnctopon 22296  intcnt 22405   Cn ccn 22612   CnP ccnp 22613  cnccncf 24276   D cdv 25264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138  ax-addf 11139  ax-mulf 11140
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9356  df-sup 9387  df-inf 9388  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-q 12883  df-rp 12925  df-xneg 13042  df-xadd 13043  df-xmul 13044  df-ioo 13278  df-ico 13280  df-icc 13281  df-fz 13435  df-fzo 13578  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-starv 17162  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-unif 17170  df-hom 17171  df-cco 17172  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-submnd 18616  df-mulg 18887  df-cntz 19111  df-cmn 19578  df-psmet 20825  df-xmet 20826  df-met 20827  df-bl 20828  df-mopn 20829  df-fbas 20830  df-fg 20831  df-cnfld 20834  df-top 22280  df-topon 22297  df-topsp 22319  df-bases 22333  df-cld 22407  df-ntr 22408  df-cls 22409  df-nei 22486  df-lp 22524  df-perf 22525  df-cn 22615  df-cnp 22616  df-haus 22703  df-cmp 22775  df-tx 22950  df-hmeo 23143  df-fil 23234  df-fm 23326  df-flim 23327  df-flf 23328  df-xms 23710  df-ms 23711  df-tms 23712  df-cncf 24278  df-limc 25267  df-dv 25268
This theorem is referenced by:  dvrelog  26029
  Copyright terms: Public domain W3C validator