MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvre Structured version   Visualization version   GIF version

Theorem dvcnvre 26058
Description: The derivative rule for inverse functions. If 𝐹 is a continuous and differentiable bijective function from 𝑋 to 𝑌 which never has derivative 0, then 𝐹 is also differentiable, and its derivative is the reciprocal of the derivative of 𝐹. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvcnvre.f (𝜑𝐹 ∈ (𝑋cn→ℝ))
dvcnvre.d (𝜑 → dom (ℝ D 𝐹) = 𝑋)
dvcnvre.z (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
dvcnvre.1 (𝜑𝐹:𝑋1-1-onto𝑌)
Assertion
Ref Expression
dvcnvre (𝜑 → (ℝ D 𝐹) = (𝑥𝑌 ↦ (1 / ((ℝ D 𝐹)‘(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌

Proof of Theorem dvcnvre
Dummy variables 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2 tgioo4 24826 . 2 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3 reelprrecn 11247 . . 3 ℝ ∈ {ℝ, ℂ}
43a1i 11 . 2 (𝜑 → ℝ ∈ {ℝ, ℂ})
5 retop 24782 . . . . 5 (topGen‘ran (,)) ∈ Top
6 dvcnvre.1 . . . . . . 7 (𝜑𝐹:𝑋1-1-onto𝑌)
7 f1ofo 6855 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
8 forn 6823 . . . . . . 7 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
96, 7, 83syl 18 . . . . . 6 (𝜑 → ran 𝐹 = 𝑌)
10 dvcnvre.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋cn→ℝ))
11 cncff 24919 . . . . . . 7 (𝐹 ∈ (𝑋cn→ℝ) → 𝐹:𝑋⟶ℝ)
12 frn 6743 . . . . . . 7 (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ)
1310, 11, 123syl 18 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ℝ)
149, 13eqsstrrd 4019 . . . . 5 (𝜑𝑌 ⊆ ℝ)
15 uniretop 24783 . . . . . 6 ℝ = (topGen‘ran (,))
1615ntrss2 23065 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ 𝑌 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝑌) ⊆ 𝑌)
175, 14, 16sylancr 587 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑌) ⊆ 𝑌)
18 f1ocnvfv2 7297 . . . . . 6 ((𝐹:𝑋1-1-onto𝑌𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
196, 18sylan 580 . . . . 5 ((𝜑𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
20 eqid 2737 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
2120rexmet 24812 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
22 dvcnvre.d . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐹) = 𝑋)
23 dvbsss 25937 . . . . . . . . . . . . 13 dom (ℝ D 𝐹) ⊆ ℝ
2423a1i 11 . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐹) ⊆ ℝ)
2522, 24eqsstrrd 4019 . . . . . . . . . . 11 (𝜑𝑋 ⊆ ℝ)
2615ntrss2 23065 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ 𝑋 ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘𝑋) ⊆ 𝑋)
275, 25, 26sylancr 587 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑋) ⊆ 𝑋)
28 ax-resscn 11212 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
2928a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
3010, 11syl 17 . . . . . . . . . . . . 13 (𝜑𝐹:𝑋⟶ℝ)
31 fss 6752 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝑋⟶ℂ)
3230, 28, 31sylancl 586 . . . . . . . . . . . 12 (𝜑𝐹:𝑋⟶ℂ)
3329, 32, 25, 2, 1dvbssntr 25935 . . . . . . . . . . 11 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
3422, 33eqsstrrd 4019 . . . . . . . . . 10 (𝜑𝑋 ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
3527, 34eqssd 4001 . . . . . . . . 9 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋)
3615isopn3 23074 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ 𝑋 ⊆ ℝ) → (𝑋 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋))
375, 25, 36sylancr 587 . . . . . . . . 9 (𝜑 → (𝑋 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑋) = 𝑋))
3835, 37mpbird 257 . . . . . . . 8 (𝜑𝑋 ∈ (topGen‘ran (,)))
39 f1ocnv 6860 . . . . . . . . . 10 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
40 f1of 6848 . . . . . . . . . 10 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
416, 39, 403syl 18 . . . . . . . . 9 (𝜑𝐹:𝑌𝑋)
4241ffvelcdmda 7104 . . . . . . . 8 ((𝜑𝑥𝑌) → (𝐹𝑥) ∈ 𝑋)
43 eqid 2737 . . . . . . . . . 10 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4420, 43tgioo 24817 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4544mopni2 24506 . . . . . . . 8 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝑋 ∈ (topGen‘ran (,)) ∧ (𝐹𝑥) ∈ 𝑋) → ∃𝑟 ∈ ℝ+ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
4621, 38, 42, 45mp3an2ani 1470 . . . . . . 7 ((𝜑𝑥𝑌) → ∃𝑟 ∈ ℝ+ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
4710ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝐹 ∈ (𝑋cn→ℝ))
4822ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → dom (ℝ D 𝐹) = 𝑋)
49 dvcnvre.z . . . . . . . . 9 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹))
5049ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ¬ 0 ∈ ran (ℝ D 𝐹))
516ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝐹:𝑋1-1-onto𝑌)
5242adantr 480 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝐹𝑥) ∈ 𝑋)
53 rphalfcl 13062 . . . . . . . . 9 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
5453ad2antrl 728 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑟 / 2) ∈ ℝ+)
5525ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝑋 ⊆ ℝ)
5655, 52sseldd 3984 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝐹𝑥) ∈ ℝ)
5754rpred 13077 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑟 / 2) ∈ ℝ)
5856, 57resubcld 11691 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ)
5956, 57readdcld 11290 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ)
60 elicc2 13452 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ ∧ ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))))
6158, 59, 60syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))))
6261biimpa 476 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2))))
6362simp1d 1143 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ∈ ℝ)
6456adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝐹𝑥) ∈ ℝ)
65 simplrl 777 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑟 ∈ ℝ+)
6665rpred 13077 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑟 ∈ ℝ)
6764, 66resubcld 11691 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) ∈ ℝ)
6858adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − (𝑟 / 2)) ∈ ℝ)
6965, 53syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ+)
7069rpred 13077 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ)
71 rphalflt 13064 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℝ+ → (𝑟 / 2) < 𝑟)
7265, 71syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑟 / 2) < 𝑟)
7370, 66, 64, 72ltsub2dd 11876 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) < ((𝐹𝑥) − (𝑟 / 2)))
7462simp2d 1144 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − (𝑟 / 2)) ≤ 𝑦)
7567, 68, 63, 73, 74ltletrd 11421 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) < 𝑦)
7659adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + (𝑟 / 2)) ∈ ℝ)
7764, 66readdcld 11290 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + 𝑟) ∈ ℝ)
7862simp3d 1145 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ≤ ((𝐹𝑥) + (𝑟 / 2)))
7970, 66, 64, 72ltadd2dd 11420 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + (𝑟 / 2)) < ((𝐹𝑥) + 𝑟))
8063, 76, 77, 78, 79lelttrd 11419 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 < ((𝐹𝑥) + 𝑟))
8167rexrd 11311 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) − 𝑟) ∈ ℝ*)
8277rexrd 11311 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → ((𝐹𝑥) + 𝑟) ∈ ℝ*)
83 elioo2 13428 . . . . . . . . . . . . . 14 ((((𝐹𝑥) − 𝑟) ∈ ℝ* ∧ ((𝐹𝑥) + 𝑟) ∈ ℝ*) → (𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − 𝑟) < 𝑦𝑦 < ((𝐹𝑥) + 𝑟))))
8481, 82, 83syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → (𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)) ↔ (𝑦 ∈ ℝ ∧ ((𝐹𝑥) − 𝑟) < 𝑦𝑦 < ((𝐹𝑥) + 𝑟))))
8563, 75, 80, 84mpbir3and 1343 . . . . . . . . . . . 12 ((((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) ∧ 𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2)))) → 𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
8685ex 412 . . . . . . . . . . 11 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (𝑦 ∈ (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) → 𝑦 ∈ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟))))
8786ssrdv 3989 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
88 rpre 13043 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
8988ad2antrl 728 . . . . . . . . . . 11 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → 𝑟 ∈ ℝ)
9020bl2ioo 24813 . . . . . . . . . . 11 (((𝐹𝑥) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
9156, 89, 90syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (((𝐹𝑥) − 𝑟)(,)((𝐹𝑥) + 𝑟)))
9287, 91sseqtrrd 4021 . . . . . . . . 9 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟))
93 simprr 773 . . . . . . . . 9 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)
9492, 93sstrd 3994 . . . . . . . 8 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → (((𝐹𝑥) − (𝑟 / 2))[,]((𝐹𝑥) + (𝑟 / 2))) ⊆ 𝑋)
95 eqid 2737 . . . . . . . 8 (topGen‘ran (,)) = (topGen‘ran (,))
96 eqid 2737 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋)
97 eqid 2737 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t 𝑌) = ((TopOpen‘ℂfld) ↾t 𝑌)
9847, 48, 50, 51, 52, 54, 94, 95, 1, 96, 97dvcnvrelem2 26057 . . . . . . 7 (((𝜑𝑥𝑌) ∧ (𝑟 ∈ ℝ+ ∧ ((𝐹𝑥)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝑋)) → ((𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌) ∧ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥)))))
9946, 98rexlimddv 3161 . . . . . 6 ((𝜑𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌) ∧ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥)))))
10099simpld 494 . . . . 5 ((𝜑𝑥𝑌) → (𝐹‘(𝐹𝑥)) ∈ ((int‘(topGen‘ran (,)))‘𝑌))
10119, 100eqeltrrd 2842 . . . 4 ((𝜑𝑥𝑌) → 𝑥 ∈ ((int‘(topGen‘ran (,)))‘𝑌))
10217, 101eqelssd 4005 . . 3 (𝜑 → ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌)
10315isopn3 23074 . . . 4 (((topGen‘ran (,)) ∈ Top ∧ 𝑌 ⊆ ℝ) → (𝑌 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌))
1045, 14, 103sylancr 587 . . 3 (𝜑 → (𝑌 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝑌) = 𝑌))
105102, 104mpbird 257 . 2 (𝜑𝑌 ∈ (topGen‘ran (,)))
10699simprd 495 . . . . . 6 ((𝜑𝑥𝑌) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥))))
10719fveq2d 6910 . . . . . 6 ((𝜑𝑥𝑌) → ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘(𝐹‘(𝐹𝑥))) = ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
108106, 107eleqtrd 2843 . . . . 5 ((𝜑𝑥𝑌) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
109108ralrimiva 3146 . . . 4 (𝜑 → ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))
1101cnfldtopon 24803 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
11114, 28sstrdi 3996 . . . . . 6 (𝜑𝑌 ⊆ ℂ)
112 resttopon 23169 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑌 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌))
113110, 111, 112sylancr 587 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌))
11425, 28sstrdi 3996 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
115 resttopon 23169 . . . . . 6 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋))
116110, 114, 115sylancr 587 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋))
117 cncnp 23288 . . . . 5 ((((TopOpen‘ℂfld) ↾t 𝑌) ∈ (TopOn‘𝑌) ∧ ((TopOpen‘ℂfld) ↾t 𝑋) ∈ (TopOn‘𝑋)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))))
118113, 116, 117syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)) ↔ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑌) CnP ((TopOpen‘ℂfld) ↾t 𝑋))‘𝑥))))
11941, 109, 118mpbir2and 713 . . 3 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
1201, 97, 96cncfcn 24936 . . . 4 ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌cn𝑋) = (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
121111, 114, 120syl2anc 584 . . 3 (𝜑 → (𝑌cn𝑋) = (((TopOpen‘ℂfld) ↾t 𝑌) Cn ((TopOpen‘ℂfld) ↾t 𝑋)))
122119, 121eleqtrrd 2844 . 2 (𝜑𝐹 ∈ (𝑌cn𝑋))
1231, 2, 4, 105, 6, 122, 22, 49dvcnv 26015 1 (𝜑 → (ℝ D 𝐹) = (𝑥𝑌 ↦ (1 / ((ℝ D 𝐹)‘(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951  {cpr 4628   class class class wbr 5143  cmpt 5225   × cxp 5683  ccnv 5684  dom cdm 5685  ran crn 5686  cres 5687  ccom 5689  wf 6557  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  *cxr 11294   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  +crp 13034  (,)cioo 13387  [,]cicc 13390  abscabs 15273  t crest 17465  TopOpenctopn 17466  topGenctg 17482  ∞Metcxmet 21349  ballcbl 21351  MetOpencmopn 21354  fldccnfld 21364  Topctop 22899  TopOnctopon 22916  intcnt 23025   Cn ccn 23232   CnP ccnp 23233  cnccncf 24902   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  dvrelog  26679
  Copyright terms: Public domain W3C validator