MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtub Structured version   Visualization version   GIF version

Theorem chtub 25790
Description: An upper bound on the Chebyshev function. (Contributed by Mario Carneiro, 13-Mar-2014.) (Revised 22-Sep-2014.)
Assertion
Ref Expression
chtub ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → (θ‘𝑁) < ((log‘2) · ((2 · 𝑁) − 3)))

Proof of Theorem chtub
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6672 . . . . 5 ((⌊‘𝑁) = 2 → (θ‘(⌊‘𝑁)) = (θ‘2))
2 2re 11714 . . . . . . . . . . 11 2 ∈ ℝ
3 1lt2 11811 . . . . . . . . . . 11 1 < 2
4 rplogcl 25189 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
52, 3, 4mp2an 690 . . . . . . . . . 10 (log‘2) ∈ ℝ+
6 elrp 12394 . . . . . . . . . 10 ((log‘2) ∈ ℝ+ ↔ ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
75, 6mpbi 232 . . . . . . . . 9 ((log‘2) ∈ ℝ ∧ 0 < (log‘2))
87simpli 486 . . . . . . . 8 (log‘2) ∈ ℝ
98recni 10657 . . . . . . 7 (log‘2) ∈ ℂ
109mulid1i 10647 . . . . . 6 ((log‘2) · 1) = (log‘2)
11 cht2 25751 . . . . . 6 (θ‘2) = (log‘2)
1210, 11eqtr4i 2849 . . . . 5 ((log‘2) · 1) = (θ‘2)
131, 12syl6reqr 2877 . . . 4 ((⌊‘𝑁) = 2 → ((log‘2) · 1) = (θ‘(⌊‘𝑁)))
14 chtfl 25728 . . . . 5 (𝑁 ∈ ℝ → (θ‘(⌊‘𝑁)) = (θ‘𝑁))
1514adantr 483 . . . 4 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → (θ‘(⌊‘𝑁)) = (θ‘𝑁))
1613, 15sylan9eqr 2880 . . 3 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → ((log‘2) · 1) = (θ‘𝑁))
17 2t2e4 11804 . . . . . . 7 (2 · 2) = 4
18 df-4 11705 . . . . . . 7 4 = (3 + 1)
1917, 18eqtri 2846 . . . . . 6 (2 · 2) = (3 + 1)
20 simplr 767 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → 2 < 𝑁)
21 simpl 485 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ)
22 2pos 11743 . . . . . . . . . 10 0 < 2
232, 22pm3.2i 473 . . . . . . . . 9 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → (2 ∈ ℝ ∧ 0 < 2))
25 ltmul2 11493 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (2 < 𝑁 ↔ (2 · 2) < (2 · 𝑁)))
262, 21, 24, 25mp3an2ani 1464 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → (2 < 𝑁 ↔ (2 · 2) < (2 · 𝑁)))
2720, 26mpbid 234 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → (2 · 2) < (2 · 𝑁))
2819, 27eqbrtrrid 5104 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → (3 + 1) < (2 · 𝑁))
29 3re 11720 . . . . . . 7 3 ∈ ℝ
3029a1i 11 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → 3 ∈ ℝ)
31 1red 10644 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → 1 ∈ ℝ)
32 remulcl 10624 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
332, 21, 32sylancr 589 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → (2 · 𝑁) ∈ ℝ)
3433adantr 483 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → (2 · 𝑁) ∈ ℝ)
3530, 31, 34ltaddsub2d 11243 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → ((3 + 1) < (2 · 𝑁) ↔ 1 < ((2 · 𝑁) − 3)))
3628, 35mpbid 234 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → 1 < ((2 · 𝑁) − 3))
37 resubcl 10952 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · 𝑁) − 3) ∈ ℝ)
3833, 29, 37sylancl 588 . . . . . 6 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → ((2 · 𝑁) − 3) ∈ ℝ)
3938adantr 483 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → ((2 · 𝑁) − 3) ∈ ℝ)
407a1i 11 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
41 ltmul2 11493 . . . . 5 ((1 ∈ ℝ ∧ ((2 · 𝑁) − 3) ∈ ℝ ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (1 < ((2 · 𝑁) − 3) ↔ ((log‘2) · 1) < ((log‘2) · ((2 · 𝑁) − 3))))
4231, 39, 40, 41syl3anc 1367 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → (1 < ((2 · 𝑁) − 3) ↔ ((log‘2) · 1) < ((log‘2) · ((2 · 𝑁) − 3))))
4336, 42mpbid 234 . . 3 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → ((log‘2) · 1) < ((log‘2) · ((2 · 𝑁) − 3)))
4416, 43eqbrtrrd 5092 . 2 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → (θ‘𝑁) < ((log‘2) · ((2 · 𝑁) − 3)))
45 chtcl 25688 . . . 4 (𝑁 ∈ ℝ → (θ‘𝑁) ∈ ℝ)
4645ad2antrr 724 . . 3 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (θ‘𝑁) ∈ ℝ)
47 reflcl 13169 . . . . . . 7 (𝑁 ∈ ℝ → (⌊‘𝑁) ∈ ℝ)
4847ad2antrr 724 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (⌊‘𝑁) ∈ ℝ)
49 remulcl 10624 . . . . . 6 ((2 ∈ ℝ ∧ (⌊‘𝑁) ∈ ℝ) → (2 · (⌊‘𝑁)) ∈ ℝ)
502, 48, 49sylancr 589 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (2 · (⌊‘𝑁)) ∈ ℝ)
51 resubcl 10952 . . . . 5 (((2 · (⌊‘𝑁)) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · (⌊‘𝑁)) − 3) ∈ ℝ)
5250, 29, 51sylancl 588 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((2 · (⌊‘𝑁)) − 3) ∈ ℝ)
53 remulcl 10624 . . . 4 (((log‘2) ∈ ℝ ∧ ((2 · (⌊‘𝑁)) − 3) ∈ ℝ) → ((log‘2) · ((2 · (⌊‘𝑁)) − 3)) ∈ ℝ)
548, 52, 53sylancr 589 . . 3 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((log‘2) · ((2 · (⌊‘𝑁)) − 3)) ∈ ℝ)
5538adantr 483 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((2 · 𝑁) − 3) ∈ ℝ)
56 remulcl 10624 . . . 4 (((log‘2) ∈ ℝ ∧ ((2 · 𝑁) − 3) ∈ ℝ) → ((log‘2) · ((2 · 𝑁) − 3)) ∈ ℝ)
578, 55, 56sylancr 589 . . 3 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((log‘2) · ((2 · 𝑁) − 3)) ∈ ℝ)
5815adantr 483 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (θ‘(⌊‘𝑁)) = (θ‘𝑁))
59 simpr 487 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (⌊‘𝑁) ∈ (ℤ‘(2 + 1)))
60 df-3 11704 . . . . . . 7 3 = (2 + 1)
6160fveq2i 6675 . . . . . 6 (ℤ‘3) = (ℤ‘(2 + 1))
6259, 61eleqtrrdi 2926 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (⌊‘𝑁) ∈ (ℤ‘3))
63 fveq2 6672 . . . . . . 7 (𝑘 = (⌊‘𝑁) → (θ‘𝑘) = (θ‘(⌊‘𝑁)))
64 oveq2 7166 . . . . . . . . 9 (𝑘 = (⌊‘𝑁) → (2 · 𝑘) = (2 · (⌊‘𝑁)))
6564oveq1d 7173 . . . . . . . 8 (𝑘 = (⌊‘𝑁) → ((2 · 𝑘) − 3) = ((2 · (⌊‘𝑁)) − 3))
6665oveq2d 7174 . . . . . . 7 (𝑘 = (⌊‘𝑁) → ((log‘2) · ((2 · 𝑘) − 3)) = ((log‘2) · ((2 · (⌊‘𝑁)) − 3)))
6763, 66breq12d 5081 . . . . . 6 (𝑘 = (⌊‘𝑁) → ((θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ (θ‘(⌊‘𝑁)) < ((log‘2) · ((2 · (⌊‘𝑁)) − 3))))
68 oveq2 7166 . . . . . . . 8 (𝑥 = 3 → (3...𝑥) = (3...3))
6968raleqdv 3417 . . . . . . 7 (𝑥 = 3 → (∀𝑘 ∈ (3...𝑥)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ ∀𝑘 ∈ (3...3)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
70 oveq2 7166 . . . . . . . 8 (𝑥 = 𝑛 → (3...𝑥) = (3...𝑛))
7170raleqdv 3417 . . . . . . 7 (𝑥 = 𝑛 → (∀𝑘 ∈ (3...𝑥)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ ∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
72 oveq2 7166 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (3...𝑥) = (3...(𝑛 + 1)))
7372raleqdv 3417 . . . . . . 7 (𝑥 = (𝑛 + 1) → (∀𝑘 ∈ (3...𝑥)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ ∀𝑘 ∈ (3...(𝑛 + 1))(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
74 oveq2 7166 . . . . . . . 8 (𝑥 = (⌊‘𝑁) → (3...𝑥) = (3...(⌊‘𝑁)))
7574raleqdv 3417 . . . . . . 7 (𝑥 = (⌊‘𝑁) → (∀𝑘 ∈ (3...𝑥)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ ∀𝑘 ∈ (3...(⌊‘𝑁))(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
76 6lt8 11833 . . . . . . . . . . 11 6 < 8
77 6re 11730 . . . . . . . . . . . . 13 6 ∈ ℝ
78 6pos 11750 . . . . . . . . . . . . 13 0 < 6
7977, 78elrpii 12395 . . . . . . . . . . . 12 6 ∈ ℝ+
80 8re 11736 . . . . . . . . . . . . 13 8 ∈ ℝ
81 8pos 11752 . . . . . . . . . . . . 13 0 < 8
8280, 81elrpii 12395 . . . . . . . . . . . 12 8 ∈ ℝ+
83 logltb 25185 . . . . . . . . . . . 12 ((6 ∈ ℝ+ ∧ 8 ∈ ℝ+) → (6 < 8 ↔ (log‘6) < (log‘8)))
8479, 82, 83mp2an 690 . . . . . . . . . . 11 (6 < 8 ↔ (log‘6) < (log‘8))
8576, 84mpbi 232 . . . . . . . . . 10 (log‘6) < (log‘8)
8685a1i 11 . . . . . . . . 9 (𝑘 ∈ (3...3) → (log‘6) < (log‘8))
87 elfz1eq 12921 . . . . . . . . . . 11 (𝑘 ∈ (3...3) → 𝑘 = 3)
8887fveq2d 6676 . . . . . . . . . 10 (𝑘 ∈ (3...3) → (θ‘𝑘) = (θ‘3))
89 cht3 25752 . . . . . . . . . 10 (θ‘3) = (log‘6)
9088, 89syl6eq 2874 . . . . . . . . 9 (𝑘 ∈ (3...3) → (θ‘𝑘) = (log‘6))
9187oveq2d 7174 . . . . . . . . . . . . 13 (𝑘 ∈ (3...3) → (2 · 𝑘) = (2 · 3))
9291oveq1d 7173 . . . . . . . . . . . 12 (𝑘 ∈ (3...3) → ((2 · 𝑘) − 3) = ((2 · 3) − 3))
93 3cn 11721 . . . . . . . . . . . . 13 3 ∈ ℂ
94932timesi 11778 . . . . . . . . . . . . 13 (2 · 3) = (3 + 3)
9593, 93, 94mvrraddi 10905 . . . . . . . . . . . 12 ((2 · 3) − 3) = 3
9692, 95syl6eq 2874 . . . . . . . . . . 11 (𝑘 ∈ (3...3) → ((2 · 𝑘) − 3) = 3)
9796oveq2d 7174 . . . . . . . . . 10 (𝑘 ∈ (3...3) → ((log‘2) · ((2 · 𝑘) − 3)) = ((log‘2) · 3))
98 2rp 12397 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
99 relogcl 25161 . . . . . . . . . . . . . . 15 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
10098, 99ax-mp 5 . . . . . . . . . . . . . 14 (log‘2) ∈ ℝ
101100recni 10657 . . . . . . . . . . . . 13 (log‘2) ∈ ℂ
102101, 93mulcomi 10651 . . . . . . . . . . . 12 ((log‘2) · 3) = (3 · (log‘2))
103 3z 12018 . . . . . . . . . . . . 13 3 ∈ ℤ
104 relogexp 25181 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ 3 ∈ ℤ) → (log‘(2↑3)) = (3 · (log‘2)))
10598, 103, 104mp2an 690 . . . . . . . . . . . 12 (log‘(2↑3)) = (3 · (log‘2))
106102, 105eqtr4i 2849 . . . . . . . . . . 11 ((log‘2) · 3) = (log‘(2↑3))
107 cu2 13566 . . . . . . . . . . . 12 (2↑3) = 8
108107fveq2i 6675 . . . . . . . . . . 11 (log‘(2↑3)) = (log‘8)
109106, 108eqtri 2846 . . . . . . . . . 10 ((log‘2) · 3) = (log‘8)
11097, 109syl6eq 2874 . . . . . . . . 9 (𝑘 ∈ (3...3) → ((log‘2) · ((2 · 𝑘) − 3)) = (log‘8))
11186, 90, 1103brtr4d 5100 . . . . . . . 8 (𝑘 ∈ (3...3) → (θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)))
112111rgen 3150 . . . . . . 7 𝑘 ∈ (3...3)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))
113 df-2 11703 . . . . . . . . . . . . . . . . . 18 2 = (1 + 1)
114 2div2e1 11781 . . . . . . . . . . . . . . . . . . . 20 (2 / 2) = 1
115 eluzle 12259 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℤ‘3) → 3 ≤ 𝑛)
11660, 115eqbrtrrid 5104 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (ℤ‘3) → (2 + 1) ≤ 𝑛)
117 2z 12017 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℤ
118 eluzelz 12256 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ ℤ)
119 zltp1le 12035 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 < 𝑛 ↔ (2 + 1) ≤ 𝑛))
120117, 118, 119sylancr 589 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (ℤ‘3) → (2 < 𝑛 ↔ (2 + 1) ≤ 𝑛))
121116, 120mpbird 259 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (ℤ‘3) → 2 < 𝑛)
122 eluzelre 12257 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ ℝ)
123 ltdiv1 11506 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (2 < 𝑛 ↔ (2 / 2) < (𝑛 / 2)))
1242, 23, 123mp3an13 1448 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℝ → (2 < 𝑛 ↔ (2 / 2) < (𝑛 / 2)))
125122, 124syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (ℤ‘3) → (2 < 𝑛 ↔ (2 / 2) < (𝑛 / 2)))
126121, 125mpbid 234 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ‘3) → (2 / 2) < (𝑛 / 2))
127114, 126eqbrtrrid 5104 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ‘3) → 1 < (𝑛 / 2))
128122rehalfcld 11887 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ‘3) → (𝑛 / 2) ∈ ℝ)
129 1re 10643 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
130 ltadd1 11109 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ ∧ (𝑛 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → (1 < (𝑛 / 2) ↔ (1 + 1) < ((𝑛 / 2) + 1)))
131129, 129, 130mp3an13 1448 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 / 2) ∈ ℝ → (1 < (𝑛 / 2) ↔ (1 + 1) < ((𝑛 / 2) + 1)))
132128, 131syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ‘3) → (1 < (𝑛 / 2) ↔ (1 + 1) < ((𝑛 / 2) + 1)))
133127, 132mpbid 234 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘3) → (1 + 1) < ((𝑛 / 2) + 1))
134113, 133eqbrtrid 5103 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → 2 < ((𝑛 / 2) + 1))
135134adantr 483 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → 2 < ((𝑛 / 2) + 1))
136 peano2z 12026 . . . . . . . . . . . . . . . . . 18 ((𝑛 / 2) ∈ ℤ → ((𝑛 / 2) + 1) ∈ ℤ)
137136adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 / 2) + 1) ∈ ℤ)
138 zltp1le 12035 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ ((𝑛 / 2) + 1) ∈ ℤ) → (2 < ((𝑛 / 2) + 1) ↔ (2 + 1) ≤ ((𝑛 / 2) + 1)))
139117, 137, 138sylancr 589 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 < ((𝑛 / 2) + 1) ↔ (2 + 1) ≤ ((𝑛 / 2) + 1)))
140135, 139mpbid 234 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 + 1) ≤ ((𝑛 / 2) + 1))
14160, 140eqbrtrid 5103 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → 3 ≤ ((𝑛 / 2) + 1))
142 1red 10644 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → 1 ∈ ℝ)
143 ltle 10731 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ (𝑛 / 2) ∈ ℝ) → (1 < (𝑛 / 2) → 1 ≤ (𝑛 / 2)))
144129, 128, 143sylancr 589 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘3) → (1 < (𝑛 / 2) → 1 ≤ (𝑛 / 2)))
145127, 144mpd 15 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → 1 ≤ (𝑛 / 2))
146142, 128, 128, 145leadd2dd 11257 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → ((𝑛 / 2) + 1) ≤ ((𝑛 / 2) + (𝑛 / 2)))
147122recnd 10671 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ ℂ)
1481472halvesd 11886 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → ((𝑛 / 2) + (𝑛 / 2)) = 𝑛)
149146, 148breqtrd 5094 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘3) → ((𝑛 / 2) + 1) ≤ 𝑛)
150149adantr 483 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 / 2) + 1) ≤ 𝑛)
151 elfz 12901 . . . . . . . . . . . . . . . 16 ((((𝑛 / 2) + 1) ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑛 / 2) + 1) ∈ (3...𝑛) ↔ (3 ≤ ((𝑛 / 2) + 1) ∧ ((𝑛 / 2) + 1) ≤ 𝑛)))
152103, 151mp3an2 1445 . . . . . . . . . . . . . . 15 ((((𝑛 / 2) + 1) ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑛 / 2) + 1) ∈ (3...𝑛) ↔ (3 ≤ ((𝑛 / 2) + 1) ∧ ((𝑛 / 2) + 1) ≤ 𝑛)))
153136, 118, 152syl2anr 598 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (((𝑛 / 2) + 1) ∈ (3...𝑛) ↔ (3 ≤ ((𝑛 / 2) + 1) ∧ ((𝑛 / 2) + 1) ≤ 𝑛)))
154141, 150, 153mpbir2and 711 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 / 2) + 1) ∈ (3...𝑛))
155 fveq2 6672 . . . . . . . . . . . . . . 15 (𝑘 = ((𝑛 / 2) + 1) → (θ‘𝑘) = (θ‘((𝑛 / 2) + 1)))
156 oveq2 7166 . . . . . . . . . . . . . . . . 17 (𝑘 = ((𝑛 / 2) + 1) → (2 · 𝑘) = (2 · ((𝑛 / 2) + 1)))
157156oveq1d 7173 . . . . . . . . . . . . . . . 16 (𝑘 = ((𝑛 / 2) + 1) → ((2 · 𝑘) − 3) = ((2 · ((𝑛 / 2) + 1)) − 3))
158157oveq2d 7174 . . . . . . . . . . . . . . 15 (𝑘 = ((𝑛 / 2) + 1) → ((log‘2) · ((2 · 𝑘) − 3)) = ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3)))
159155, 158breq12d 5081 . . . . . . . . . . . . . 14 (𝑘 = ((𝑛 / 2) + 1) → ((θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ (θ‘((𝑛 / 2) + 1)) < ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3))))
160159rspcv 3620 . . . . . . . . . . . . 13 (((𝑛 / 2) + 1) ∈ (3...𝑛) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘((𝑛 / 2) + 1)) < ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3))))
161154, 160syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘((𝑛 / 2) + 1)) < ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3))))
162128recnd 10671 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (ℤ‘3) → (𝑛 / 2) ∈ ℂ)
163162adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (𝑛 / 2) ∈ ℂ)
164 2cn 11715 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℂ
165 ax-1cn 10597 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
166 adddi 10628 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℂ ∧ (𝑛 / 2) ∈ ℂ ∧ 1 ∈ ℂ) → (2 · ((𝑛 / 2) + 1)) = ((2 · (𝑛 / 2)) + (2 · 1)))
167164, 165, 166mp3an13 1448 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 / 2) ∈ ℂ → (2 · ((𝑛 / 2) + 1)) = ((2 · (𝑛 / 2)) + (2 · 1)))
168163, 167syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · ((𝑛 / 2) + 1)) = ((2 · (𝑛 / 2)) + (2 · 1)))
169147adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → 𝑛 ∈ ℂ)
170 2ne0 11744 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
171 divcan2 11308 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝑛 / 2)) = 𝑛)
172164, 170, 171mp3an23 1449 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℂ → (2 · (𝑛 / 2)) = 𝑛)
173169, 172syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · (𝑛 / 2)) = 𝑛)
174164mulid1i 10647 . . . . . . . . . . . . . . . . . . . . 21 (2 · 1) = 2
175174a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · 1) = 2)
176173, 175oveq12d 7176 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · (𝑛 / 2)) + (2 · 1)) = (𝑛 + 2))
177168, 176eqtrd 2858 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · ((𝑛 / 2) + 1)) = (𝑛 + 2))
178177oveq1d 7173 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · ((𝑛 / 2) + 1)) − 3) = ((𝑛 + 2) − 3))
179 2p1e3 11782 . . . . . . . . . . . . . . . . . . . 20 (2 + 1) = 3
18093, 164, 165, 179subaddrii 10977 . . . . . . . . . . . . . . . . . . 19 (3 − 2) = 1
181180oveq2i 7169 . . . . . . . . . . . . . . . . . 18 (𝑛 − (3 − 2)) = (𝑛 − 1)
182 subsub3 10920 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℂ ∧ 3 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑛 − (3 − 2)) = ((𝑛 + 2) − 3))
18393, 164, 182mp3an23 1449 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℂ → (𝑛 − (3 − 2)) = ((𝑛 + 2) − 3))
184169, 183syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (𝑛 − (3 − 2)) = ((𝑛 + 2) − 3))
185181, 184syl5reqr 2873 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 + 2) − 3) = (𝑛 − 1))
186178, 185eqtrd 2858 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · ((𝑛 / 2) + 1)) − 3) = (𝑛 − 1))
187186oveq2d 7174 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3)) = ((log‘2) · (𝑛 − 1)))
188187breq2d 5080 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((θ‘((𝑛 / 2) + 1)) < ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3)) ↔ (θ‘((𝑛 / 2) + 1)) < ((log‘2) · (𝑛 − 1))))
189137zred 12090 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 / 2) + 1) ∈ ℝ)
190 chtcl 25688 . . . . . . . . . . . . . . . 16 (((𝑛 / 2) + 1) ∈ ℝ → (θ‘((𝑛 / 2) + 1)) ∈ ℝ)
191189, 190syl 17 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (θ‘((𝑛 / 2) + 1)) ∈ ℝ)
192122adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → 𝑛 ∈ ℝ)
193 peano2rem 10955 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
194192, 193syl 17 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (𝑛 − 1) ∈ ℝ)
195 remulcl 10624 . . . . . . . . . . . . . . . 16 (((log‘2) ∈ ℝ ∧ (𝑛 − 1) ∈ ℝ) → ((log‘2) · (𝑛 − 1)) ∈ ℝ)
196100, 194, 195sylancr 589 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘2) · (𝑛 − 1)) ∈ ℝ)
197 remulcl 10624 . . . . . . . . . . . . . . . 16 (((log‘2) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((log‘2) · 𝑛) ∈ ℝ)
198100, 192, 197sylancr 589 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘2) · 𝑛) ∈ ℝ)
199191, 196, 198ltadd1d 11235 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((θ‘((𝑛 / 2) + 1)) < ((log‘2) · (𝑛 − 1)) ↔ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) < (((log‘2) · (𝑛 − 1)) + ((log‘2) · 𝑛))))
200101a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (log‘2) ∈ ℂ)
201194recnd 10671 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (𝑛 − 1) ∈ ℂ)
202200, 201, 169adddid 10667 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘2) · ((𝑛 − 1) + 𝑛)) = (((log‘2) · (𝑛 − 1)) + ((log‘2) · 𝑛)))
203 adddi 10628 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
204164, 165, 203mp3an13 1448 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℂ → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
205169, 204syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
206174oveq2i 7169 . . . . . . . . . . . . . . . . . . . 20 ((2 · 𝑛) + (2 · 1)) = ((2 · 𝑛) + 2)
207205, 206syl6eq 2874 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · (𝑛 + 1)) = ((2 · 𝑛) + 2))
208207oveq1d 7173 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · (𝑛 + 1)) − 3) = (((2 · 𝑛) + 2) − 3))
209 zmulcl 12034 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
210117, 118, 209sylancr 589 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (ℤ‘3) → (2 · 𝑛) ∈ ℤ)
211210zcnd 12091 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ‘3) → (2 · 𝑛) ∈ ℂ)
212211adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · 𝑛) ∈ ℂ)
213 subsub3 10920 . . . . . . . . . . . . . . . . . . . 20 (((2 · 𝑛) ∈ ℂ ∧ 3 ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · 𝑛) − (3 − 2)) = (((2 · 𝑛) + 2) − 3))
21493, 164, 213mp3an23 1449 . . . . . . . . . . . . . . . . . . 19 ((2 · 𝑛) ∈ ℂ → ((2 · 𝑛) − (3 − 2)) = (((2 · 𝑛) + 2) − 3))
215212, 214syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · 𝑛) − (3 − 2)) = (((2 · 𝑛) + 2) − 3))
216180oveq2i 7169 . . . . . . . . . . . . . . . . . . 19 ((2 · 𝑛) − (3 − 2)) = ((2 · 𝑛) − 1)
2171692timesd 11883 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · 𝑛) = (𝑛 + 𝑛))
218217oveq1d 7173 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · 𝑛) − 1) = ((𝑛 + 𝑛) − 1))
219165a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → 1 ∈ ℂ)
220169, 169, 219addsubd 11020 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 + 𝑛) − 1) = ((𝑛 − 1) + 𝑛))
221218, 220eqtrd 2858 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · 𝑛) − 1) = ((𝑛 − 1) + 𝑛))
222216, 221syl5eq 2870 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · 𝑛) − (3 − 2)) = ((𝑛 − 1) + 𝑛))
223208, 215, 2223eqtr2rd 2865 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 − 1) + 𝑛) = ((2 · (𝑛 + 1)) − 3))
224223oveq2d 7174 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘2) · ((𝑛 − 1) + 𝑛)) = ((log‘2) · ((2 · (𝑛 + 1)) − 3)))
225202, 224eqtr3d 2860 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (((log‘2) · (𝑛 − 1)) + ((log‘2) · 𝑛)) = ((log‘2) · ((2 · (𝑛 + 1)) − 3)))
226225breq2d 5080 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) < (((log‘2) · (𝑛 − 1)) + ((log‘2) · 𝑛)) ↔ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
227188, 199, 2263bitrd 307 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((θ‘((𝑛 / 2) + 1)) < ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3)) ↔ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
228 3nn 11719 . . . . . . . . . . . . . . . . 17 3 ∈ ℕ
229 elfzuz 12907 . . . . . . . . . . . . . . . . . 18 (((𝑛 / 2) + 1) ∈ (3...𝑛) → ((𝑛 / 2) + 1) ∈ (ℤ‘3))
230154, 229syl 17 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 / 2) + 1) ∈ (ℤ‘3))
231 eluznn 12321 . . . . . . . . . . . . . . . . 17 ((3 ∈ ℕ ∧ ((𝑛 / 2) + 1) ∈ (ℤ‘3)) → ((𝑛 / 2) + 1) ∈ ℕ)
232228, 230, 231sylancr 589 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 / 2) + 1) ∈ ℕ)
233 chtublem 25789 . . . . . . . . . . . . . . . 16 (((𝑛 / 2) + 1) ∈ ℕ → (θ‘((2 · ((𝑛 / 2) + 1)) − 1)) ≤ ((θ‘((𝑛 / 2) + 1)) + ((log‘4) · (((𝑛 / 2) + 1) − 1))))
234232, 233syl 17 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (θ‘((2 · ((𝑛 / 2) + 1)) − 1)) ≤ ((θ‘((𝑛 / 2) + 1)) + ((log‘4) · (((𝑛 / 2) + 1) − 1))))
235177oveq1d 7173 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · ((𝑛 / 2) + 1)) − 1) = ((𝑛 + 2) − 1))
236 addsubass 10898 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 2) − 1) = (𝑛 + (2 − 1)))
237164, 165, 236mp3an23 1449 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℂ → ((𝑛 + 2) − 1) = (𝑛 + (2 − 1)))
238169, 237syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 + 2) − 1) = (𝑛 + (2 − 1)))
239 2m1e1 11766 . . . . . . . . . . . . . . . . . . 19 (2 − 1) = 1
240239oveq2i 7169 . . . . . . . . . . . . . . . . . 18 (𝑛 + (2 − 1)) = (𝑛 + 1)
241238, 240syl6eq 2874 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 + 2) − 1) = (𝑛 + 1))
242235, 241eqtrd 2858 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · ((𝑛 / 2) + 1)) − 1) = (𝑛 + 1))
243242fveq2d 6676 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (θ‘((2 · ((𝑛 / 2) + 1)) − 1)) = (θ‘(𝑛 + 1)))
244 pncan 10894 . . . . . . . . . . . . . . . . . . 19 (((𝑛 / 2) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑛 / 2) + 1) − 1) = (𝑛 / 2))
245163, 165, 244sylancl 588 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (((𝑛 / 2) + 1) − 1) = (𝑛 / 2))
246245oveq2d 7174 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘4) · (((𝑛 / 2) + 1) − 1)) = ((log‘4) · (𝑛 / 2)))
247 relogexp 25181 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘(2↑2)) = (2 · (log‘2)))
24898, 117, 247mp2an 690 . . . . . . . . . . . . . . . . . . . 20 (log‘(2↑2)) = (2 · (log‘2))
249 sq2 13563 . . . . . . . . . . . . . . . . . . . . 21 (2↑2) = 4
250249fveq2i 6675 . . . . . . . . . . . . . . . . . . . 20 (log‘(2↑2)) = (log‘4)
251164, 101mulcomi 10651 . . . . . . . . . . . . . . . . . . . 20 (2 · (log‘2)) = ((log‘2) · 2)
252248, 250, 2513eqtr3i 2854 . . . . . . . . . . . . . . . . . . 19 (log‘4) = ((log‘2) · 2)
253252oveq1i 7168 . . . . . . . . . . . . . . . . . 18 ((log‘4) · (𝑛 / 2)) = (((log‘2) · 2) · (𝑛 / 2))
254164a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → 2 ∈ ℂ)
255200, 254, 163mulassd 10666 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (((log‘2) · 2) · (𝑛 / 2)) = ((log‘2) · (2 · (𝑛 / 2))))
256253, 255syl5eq 2870 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘4) · (𝑛 / 2)) = ((log‘2) · (2 · (𝑛 / 2))))
257173oveq2d 7174 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘2) · (2 · (𝑛 / 2))) = ((log‘2) · 𝑛))
258246, 256, 2573eqtrd 2862 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘4) · (((𝑛 / 2) + 1) − 1)) = ((log‘2) · 𝑛))
259258oveq2d 7174 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((θ‘((𝑛 / 2) + 1)) + ((log‘4) · (((𝑛 / 2) + 1) − 1))) = ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)))
260234, 243, 2593brtr3d 5099 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (θ‘(𝑛 + 1)) ≤ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)))
261 peano2uz 12304 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ‘3) → (𝑛 + 1) ∈ (ℤ‘3))
262 eluzelz 12256 . . . . . . . . . . . . . . . . . . 19 ((𝑛 + 1) ∈ (ℤ‘3) → (𝑛 + 1) ∈ ℤ)
263261, 262syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘3) → (𝑛 + 1) ∈ ℤ)
264263zred 12090 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → (𝑛 + 1) ∈ ℝ)
265264adantr 483 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (𝑛 + 1) ∈ ℝ)
266 chtcl 25688 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ ℝ → (θ‘(𝑛 + 1)) ∈ ℝ)
267265, 266syl 17 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (θ‘(𝑛 + 1)) ∈ ℝ)
268191, 198readdcld 10672 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) ∈ ℝ)
269 zmulcl 12034 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℤ ∧ (𝑛 + 1) ∈ ℤ) → (2 · (𝑛 + 1)) ∈ ℤ)
270117, 263, 269sylancr 589 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ‘3) → (2 · (𝑛 + 1)) ∈ ℤ)
271270zred 12090 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘3) → (2 · (𝑛 + 1)) ∈ ℝ)
272 resubcl 10952 . . . . . . . . . . . . . . . . . 18 (((2 · (𝑛 + 1)) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · (𝑛 + 1)) − 3) ∈ ℝ)
273271, 29, 272sylancl 588 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → ((2 · (𝑛 + 1)) − 3) ∈ ℝ)
274273adantr 483 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · (𝑛 + 1)) − 3) ∈ ℝ)
275 remulcl 10624 . . . . . . . . . . . . . . . 16 (((log‘2) ∈ ℝ ∧ ((2 · (𝑛 + 1)) − 3) ∈ ℝ) → ((log‘2) · ((2 · (𝑛 + 1)) − 3)) ∈ ℝ)
276100, 274, 275sylancr 589 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘2) · ((2 · (𝑛 + 1)) − 3)) ∈ ℝ)
277 lelttr 10733 . . . . . . . . . . . . . . 15 (((θ‘(𝑛 + 1)) ∈ ℝ ∧ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) ∈ ℝ ∧ ((log‘2) · ((2 · (𝑛 + 1)) − 3)) ∈ ℝ) → (((θ‘(𝑛 + 1)) ≤ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) ∧ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
278267, 268, 276, 277syl3anc 1367 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (((θ‘(𝑛 + 1)) ≤ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) ∧ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
279260, 278mpand 693 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3)) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
280227, 279sylbid 242 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((θ‘((𝑛 / 2) + 1)) < ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3)) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
281161, 280syld 47 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
282 eluzfz2 12918 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ (3...𝑛))
283 fveq2 6672 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (θ‘𝑘) = (θ‘𝑛))
284 oveq2 7166 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛))
285284oveq1d 7173 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → ((2 · 𝑘) − 3) = ((2 · 𝑛) − 3))
286285oveq2d 7174 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((log‘2) · ((2 · 𝑘) − 3)) = ((log‘2) · ((2 · 𝑛) − 3)))
287283, 286breq12d 5081 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ (θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3))))
288287rspcv 3620 . . . . . . . . . . . . . 14 (𝑛 ∈ (3...𝑛) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3))))
289282, 288syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ‘3) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3))))
290289adantr 483 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘3) ∧ ((𝑛 + 1) / 2) ∈ ℤ) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3))))
291210zred 12090 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → (2 · 𝑛) ∈ ℝ)
29229a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → 3 ∈ ℝ)
293122ltp1d 11572 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘3) → 𝑛 < (𝑛 + 1))
29423a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ‘3) → (2 ∈ ℝ ∧ 0 < 2))
295 ltmul2 11493 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑛 < (𝑛 + 1) ↔ (2 · 𝑛) < (2 · (𝑛 + 1))))
296122, 264, 294, 295syl3anc 1367 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘3) → (𝑛 < (𝑛 + 1) ↔ (2 · 𝑛) < (2 · (𝑛 + 1))))
297293, 296mpbid 234 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → (2 · 𝑛) < (2 · (𝑛 + 1)))
298291, 271, 292, 297ltsub1dd 11254 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → ((2 · 𝑛) − 3) < ((2 · (𝑛 + 1)) − 3))
299 resubcl 10952 . . . . . . . . . . . . . . . . . 18 (((2 · 𝑛) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · 𝑛) − 3) ∈ ℝ)
300291, 29, 299sylancl 588 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → ((2 · 𝑛) − 3) ∈ ℝ)
3017a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
302 ltmul2 11493 . . . . . . . . . . . . . . . . 17 ((((2 · 𝑛) − 3) ∈ ℝ ∧ ((2 · (𝑛 + 1)) − 3) ∈ ℝ ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (((2 · 𝑛) − 3) < ((2 · (𝑛 + 1)) − 3) ↔ ((log‘2) · ((2 · 𝑛) − 3)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
303300, 273, 301, 302syl3anc 1367 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → (((2 · 𝑛) − 3) < ((2 · (𝑛 + 1)) − 3) ↔ ((log‘2) · ((2 · 𝑛) − 3)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
304298, 303mpbid 234 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘3) → ((log‘2) · ((2 · 𝑛) − 3)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3)))
305 chtcl 25688 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → (θ‘𝑛) ∈ ℝ)
306122, 305syl 17 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → (θ‘𝑛) ∈ ℝ)
307 remulcl 10624 . . . . . . . . . . . . . . . . 17 (((log‘2) ∈ ℝ ∧ ((2 · 𝑛) − 3) ∈ ℝ) → ((log‘2) · ((2 · 𝑛) − 3)) ∈ ℝ)
308100, 300, 307sylancr 589 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → ((log‘2) · ((2 · 𝑛) − 3)) ∈ ℝ)
309100, 273, 275sylancr 589 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → ((log‘2) · ((2 · (𝑛 + 1)) − 3)) ∈ ℝ)
310 lttr 10719 . . . . . . . . . . . . . . . 16 (((θ‘𝑛) ∈ ℝ ∧ ((log‘2) · ((2 · 𝑛) − 3)) ∈ ℝ ∧ ((log‘2) · ((2 · (𝑛 + 1)) − 3)) ∈ ℝ) → (((θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3)) ∧ ((log‘2) · ((2 · 𝑛) − 3)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))) → (θ‘𝑛) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
311306, 308, 309, 310syl3anc 1367 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘3) → (((θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3)) ∧ ((log‘2) · ((2 · 𝑛) − 3)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))) → (θ‘𝑛) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
312304, 311mpan2d 692 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘3) → ((θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3)) → (θ‘𝑛) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
313312adantr 483 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘3) ∧ ((𝑛 + 1) / 2) ∈ ℤ) → ((θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3)) → (θ‘𝑛) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
314 evend2 15708 . . . . . . . . . . . . . . . . . 18 ((𝑛 + 1) ∈ ℤ → (2 ∥ (𝑛 + 1) ↔ ((𝑛 + 1) / 2) ∈ ℤ))
315263, 314syl 17 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → (2 ∥ (𝑛 + 1) ↔ ((𝑛 + 1) / 2) ∈ ℤ))
316 2lt3 11812 . . . . . . . . . . . . . . . . . . . . . . . 24 2 < 3
3172, 29ltnlei 10763 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 < 3 ↔ ¬ 3 ≤ 2)
318316, 317mpbi 232 . . . . . . . . . . . . . . . . . . . . . . 23 ¬ 3 ≤ 2
319 breq2 5072 . . . . . . . . . . . . . . . . . . . . . . 23 (2 = (𝑛 + 1) → (3 ≤ 2 ↔ 3 ≤ (𝑛 + 1)))
320318, 319mtbii 328 . . . . . . . . . . . . . . . . . . . . . 22 (2 = (𝑛 + 1) → ¬ 3 ≤ (𝑛 + 1))
321 eluzle 12259 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 + 1) ∈ (ℤ‘3) → 3 ≤ (𝑛 + 1))
322261, 321syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (ℤ‘3) → 3 ≤ (𝑛 + 1))
323320, 322nsyl3 140 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (ℤ‘3) → ¬ 2 = (𝑛 + 1))
324323adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 + 1) ∈ ℙ) → ¬ 2 = (𝑛 + 1))
325 uzid 12261 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
326117, 325ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ (ℤ‘2)
327 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 + 1) ∈ ℙ) → (𝑛 + 1) ∈ ℙ)
328 dvdsprm 16049 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ (ℤ‘2) ∧ (𝑛 + 1) ∈ ℙ) → (2 ∥ (𝑛 + 1) ↔ 2 = (𝑛 + 1)))
329326, 327, 328sylancr 589 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 + 1) ∈ ℙ) → (2 ∥ (𝑛 + 1) ↔ 2 = (𝑛 + 1)))
330324, 329mtbird 327 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 + 1) ∈ ℙ) → ¬ 2 ∥ (𝑛 + 1))
331330ex 415 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘3) → ((𝑛 + 1) ∈ ℙ → ¬ 2 ∥ (𝑛 + 1)))
332331con2d 136 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → (2 ∥ (𝑛 + 1) → ¬ (𝑛 + 1) ∈ ℙ))
333315, 332sylbird 262 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → (((𝑛 + 1) / 2) ∈ ℤ → ¬ (𝑛 + 1) ∈ ℙ))
334333imp 409 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ ((𝑛 + 1) / 2) ∈ ℤ) → ¬ (𝑛 + 1) ∈ ℙ)
335 chtnprm 25733 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℤ ∧ ¬ (𝑛 + 1) ∈ ℙ) → (θ‘(𝑛 + 1)) = (θ‘𝑛))
336118, 334, 335syl2an2r 683 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ ((𝑛 + 1) / 2) ∈ ℤ) → (θ‘(𝑛 + 1)) = (θ‘𝑛))
337336breq1d 5078 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘3) ∧ ((𝑛 + 1) / 2) ∈ ℤ) → ((θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3)) ↔ (θ‘𝑛) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
338313, 337sylibrd 261 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘3) ∧ ((𝑛 + 1) / 2) ∈ ℤ) → ((θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3)) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
339290, 338syld 47 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘3) ∧ ((𝑛 + 1) / 2) ∈ ℤ) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
340 zeo 12071 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → ((𝑛 / 2) ∈ ℤ ∨ ((𝑛 + 1) / 2) ∈ ℤ))
341118, 340syl 17 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘3) → ((𝑛 / 2) ∈ ℤ ∨ ((𝑛 + 1) / 2) ∈ ℤ))
342281, 339, 341mpjaodan 955 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘3) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
343 ovex 7191 . . . . . . . . . . 11 (𝑛 + 1) ∈ V
344 fveq2 6672 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (θ‘𝑘) = (θ‘(𝑛 + 1)))
345 oveq2 7166 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → (2 · 𝑘) = (2 · (𝑛 + 1)))
346345oveq1d 7173 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((2 · 𝑘) − 3) = ((2 · (𝑛 + 1)) − 3))
347346oveq2d 7174 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((log‘2) · ((2 · 𝑘) − 3)) = ((log‘2) · ((2 · (𝑛 + 1)) − 3)))
348344, 347breq12d 5081 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → ((θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
349343, 348ralsn 4621 . . . . . . . . . 10 (∀𝑘 ∈ {(𝑛 + 1)} (θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3)))
350342, 349syl6ibr 254 . . . . . . . . 9 (𝑛 ∈ (ℤ‘3) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → ∀𝑘 ∈ {(𝑛 + 1)} (θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
351350ancld 553 . . . . . . . 8 (𝑛 ∈ (ℤ‘3) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ∧ ∀𝑘 ∈ {(𝑛 + 1)} (θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)))))
352 ralun 4170 . . . . . . . . 9 ((∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ∧ ∀𝑘 ∈ {(𝑛 + 1)} (θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))) → ∀𝑘 ∈ ((3...𝑛) ∪ {(𝑛 + 1)})(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)))
353 fzsuc 12957 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘3) → (3...(𝑛 + 1)) = ((3...𝑛) ∪ {(𝑛 + 1)}))
354353raleqdv 3417 . . . . . . . . 9 (𝑛 ∈ (ℤ‘3) → (∀𝑘 ∈ (3...(𝑛 + 1))(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ ∀𝑘 ∈ ((3...𝑛) ∪ {(𝑛 + 1)})(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
355352, 354syl5ibr 248 . . . . . . . 8 (𝑛 ∈ (ℤ‘3) → ((∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ∧ ∀𝑘 ∈ {(𝑛 + 1)} (θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))) → ∀𝑘 ∈ (3...(𝑛 + 1))(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
356351, 355syld 47 . . . . . . 7 (𝑛 ∈ (ℤ‘3) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → ∀𝑘 ∈ (3...(𝑛 + 1))(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
35769, 71, 73, 75, 112, 356uzind4i 12313 . . . . . 6 ((⌊‘𝑁) ∈ (ℤ‘3) → ∀𝑘 ∈ (3...(⌊‘𝑁))(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)))
358 eluzfz2 12918 . . . . . 6 ((⌊‘𝑁) ∈ (ℤ‘3) → (⌊‘𝑁) ∈ (3...(⌊‘𝑁)))
35967, 357, 358rspcdva 3627 . . . . 5 ((⌊‘𝑁) ∈ (ℤ‘3) → (θ‘(⌊‘𝑁)) < ((log‘2) · ((2 · (⌊‘𝑁)) − 3)))
36062, 359syl 17 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (θ‘(⌊‘𝑁)) < ((log‘2) · ((2 · (⌊‘𝑁)) − 3)))
36158, 360eqbrtrrd 5092 . . 3 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (θ‘𝑁) < ((log‘2) · ((2 · (⌊‘𝑁)) − 3)))
36233adantr 483 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (2 · 𝑁) ∈ ℝ)
36329a1i 11 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → 3 ∈ ℝ)
364 flle 13172 . . . . . . 7 (𝑁 ∈ ℝ → (⌊‘𝑁) ≤ 𝑁)
365364ad2antrr 724 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (⌊‘𝑁) ≤ 𝑁)
36621adantr 483 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → 𝑁 ∈ ℝ)
36723a1i 11 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (2 ∈ ℝ ∧ 0 < 2))
368 lemul2 11495 . . . . . . 7 (((⌊‘𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((⌊‘𝑁) ≤ 𝑁 ↔ (2 · (⌊‘𝑁)) ≤ (2 · 𝑁)))
36948, 366, 367, 368syl3anc 1367 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((⌊‘𝑁) ≤ 𝑁 ↔ (2 · (⌊‘𝑁)) ≤ (2 · 𝑁)))
370365, 369mpbid 234 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (2 · (⌊‘𝑁)) ≤ (2 · 𝑁))
37150, 362, 363, 370lesub1dd 11258 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((2 · (⌊‘𝑁)) − 3) ≤ ((2 · 𝑁) − 3))
3727a1i 11 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
373 lemul2 11495 . . . . 5 ((((2 · (⌊‘𝑁)) − 3) ∈ ℝ ∧ ((2 · 𝑁) − 3) ∈ ℝ ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (((2 · (⌊‘𝑁)) − 3) ≤ ((2 · 𝑁) − 3) ↔ ((log‘2) · ((2 · (⌊‘𝑁)) − 3)) ≤ ((log‘2) · ((2 · 𝑁) − 3))))
37452, 55, 372, 373syl3anc 1367 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (((2 · (⌊‘𝑁)) − 3) ≤ ((2 · 𝑁) − 3) ↔ ((log‘2) · ((2 · (⌊‘𝑁)) − 3)) ≤ ((log‘2) · ((2 · 𝑁) − 3))))
375371, 374mpbid 234 . . 3 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((log‘2) · ((2 · (⌊‘𝑁)) − 3)) ≤ ((log‘2) · ((2 · 𝑁) − 3)))
37646, 54, 57, 361, 375ltletrd 10802 . 2 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (θ‘𝑁) < ((log‘2) · ((2 · 𝑁) − 3)))
377117a1i 11 . . . 4 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → 2 ∈ ℤ)
378 flcl 13168 . . . . 5 (𝑁 ∈ ℝ → (⌊‘𝑁) ∈ ℤ)
379378adantr 483 . . . 4 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → (⌊‘𝑁) ∈ ℤ)
380 ltle 10731 . . . . . . 7 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 < 𝑁 → 2 ≤ 𝑁))
3812, 380mpan 688 . . . . . 6 (𝑁 ∈ ℝ → (2 < 𝑁 → 2 ≤ 𝑁))
382 flge 13178 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 2 ∈ ℤ) → (2 ≤ 𝑁 ↔ 2 ≤ (⌊‘𝑁)))
383117, 382mpan2 689 . . . . . 6 (𝑁 ∈ ℝ → (2 ≤ 𝑁 ↔ 2 ≤ (⌊‘𝑁)))
384381, 383sylibd 241 . . . . 5 (𝑁 ∈ ℝ → (2 < 𝑁 → 2 ≤ (⌊‘𝑁)))
385384imp 409 . . . 4 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → 2 ≤ (⌊‘𝑁))
386 eluz2 12252 . . . 4 ((⌊‘𝑁) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (⌊‘𝑁) ∈ ℤ ∧ 2 ≤ (⌊‘𝑁)))
387377, 379, 385, 386syl3anbrc 1339 . . 3 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → (⌊‘𝑁) ∈ (ℤ‘2))
388 uzp1 12282 . . 3 ((⌊‘𝑁) ∈ (ℤ‘2) → ((⌊‘𝑁) = 2 ∨ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))))
389387, 388syl 17 . 2 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → ((⌊‘𝑁) = 2 ∨ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))))
39044, 376, 389mpjaodan 955 1 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → (θ‘𝑁) < ((log‘2) · ((2 · 𝑁) − 3)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  wral 3140  cun 3936  {csn 4569   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  3c3 11696  4c4 11697  6c6 11699  8c8 11701  cz 11984  cuz 12246  +crp 12392  ...cfz 12895  cfl 13163  cexp 13432  cdvds 15609  cprime 16017  logclog 25140  θccht 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-dvds 15610  df-gcd 15846  df-prm 16018  df-pc 16176  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-cht 25676
This theorem is referenced by:  bposlem6  25867  chto1ub  26054
  Copyright terms: Public domain W3C validator