MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtub Structured version   Visualization version   GIF version

Theorem chtub 26265
Description: An upper bound on the Chebyshev function. (Contributed by Mario Carneiro, 13-Mar-2014.) (Revised 22-Sep-2014.)
Assertion
Ref Expression
chtub ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → (θ‘𝑁) < ((log‘2) · ((2 · 𝑁) − 3)))

Proof of Theorem chtub
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 11977 . . . . . . . . . . 11 2 ∈ ℝ
2 1lt2 12074 . . . . . . . . . . 11 1 < 2
3 rplogcl 25664 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
41, 2, 3mp2an 688 . . . . . . . . . 10 (log‘2) ∈ ℝ+
5 elrp 12661 . . . . . . . . . 10 ((log‘2) ∈ ℝ+ ↔ ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
64, 5mpbi 229 . . . . . . . . 9 ((log‘2) ∈ ℝ ∧ 0 < (log‘2))
76simpli 483 . . . . . . . 8 (log‘2) ∈ ℝ
87recni 10920 . . . . . . 7 (log‘2) ∈ ℂ
98mulid1i 10910 . . . . . 6 ((log‘2) · 1) = (log‘2)
10 cht2 26226 . . . . . 6 (θ‘2) = (log‘2)
119, 10eqtr4i 2769 . . . . 5 ((log‘2) · 1) = (θ‘2)
12 fveq2 6756 . . . . 5 ((⌊‘𝑁) = 2 → (θ‘(⌊‘𝑁)) = (θ‘2))
1311, 12eqtr4id 2798 . . . 4 ((⌊‘𝑁) = 2 → ((log‘2) · 1) = (θ‘(⌊‘𝑁)))
14 chtfl 26203 . . . . 5 (𝑁 ∈ ℝ → (θ‘(⌊‘𝑁)) = (θ‘𝑁))
1514adantr 480 . . . 4 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → (θ‘(⌊‘𝑁)) = (θ‘𝑁))
1613, 15sylan9eqr 2801 . . 3 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → ((log‘2) · 1) = (θ‘𝑁))
17 2t2e4 12067 . . . . . . 7 (2 · 2) = 4
18 df-4 11968 . . . . . . 7 4 = (3 + 1)
1917, 18eqtri 2766 . . . . . 6 (2 · 2) = (3 + 1)
20 simplr 765 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → 2 < 𝑁)
21 simpl 482 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → 𝑁 ∈ ℝ)
22 2pos 12006 . . . . . . . . . 10 0 < 2
231, 22pm3.2i 470 . . . . . . . . 9 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → (2 ∈ ℝ ∧ 0 < 2))
25 ltmul2 11756 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (2 < 𝑁 ↔ (2 · 2) < (2 · 𝑁)))
261, 21, 24, 25mp3an2ani 1466 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → (2 < 𝑁 ↔ (2 · 2) < (2 · 𝑁)))
2720, 26mpbid 231 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → (2 · 2) < (2 · 𝑁))
2819, 27eqbrtrrid 5106 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → (3 + 1) < (2 · 𝑁))
29 3re 11983 . . . . . . 7 3 ∈ ℝ
3029a1i 11 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → 3 ∈ ℝ)
31 1red 10907 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → 1 ∈ ℝ)
32 remulcl 10887 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
331, 21, 32sylancr 586 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → (2 · 𝑁) ∈ ℝ)
3433adantr 480 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → (2 · 𝑁) ∈ ℝ)
3530, 31, 34ltaddsub2d 11506 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → ((3 + 1) < (2 · 𝑁) ↔ 1 < ((2 · 𝑁) − 3)))
3628, 35mpbid 231 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → 1 < ((2 · 𝑁) − 3))
37 resubcl 11215 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · 𝑁) − 3) ∈ ℝ)
3833, 29, 37sylancl 585 . . . . . 6 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → ((2 · 𝑁) − 3) ∈ ℝ)
3938adantr 480 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → ((2 · 𝑁) − 3) ∈ ℝ)
406a1i 11 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
41 ltmul2 11756 . . . . 5 ((1 ∈ ℝ ∧ ((2 · 𝑁) − 3) ∈ ℝ ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (1 < ((2 · 𝑁) − 3) ↔ ((log‘2) · 1) < ((log‘2) · ((2 · 𝑁) − 3))))
4231, 39, 40, 41syl3anc 1369 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → (1 < ((2 · 𝑁) − 3) ↔ ((log‘2) · 1) < ((log‘2) · ((2 · 𝑁) − 3))))
4336, 42mpbid 231 . . 3 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → ((log‘2) · 1) < ((log‘2) · ((2 · 𝑁) − 3)))
4416, 43eqbrtrrd 5094 . 2 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) = 2) → (θ‘𝑁) < ((log‘2) · ((2 · 𝑁) − 3)))
45 chtcl 26163 . . . 4 (𝑁 ∈ ℝ → (θ‘𝑁) ∈ ℝ)
4645ad2antrr 722 . . 3 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (θ‘𝑁) ∈ ℝ)
47 reflcl 13444 . . . . . . 7 (𝑁 ∈ ℝ → (⌊‘𝑁) ∈ ℝ)
4847ad2antrr 722 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (⌊‘𝑁) ∈ ℝ)
49 remulcl 10887 . . . . . 6 ((2 ∈ ℝ ∧ (⌊‘𝑁) ∈ ℝ) → (2 · (⌊‘𝑁)) ∈ ℝ)
501, 48, 49sylancr 586 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (2 · (⌊‘𝑁)) ∈ ℝ)
51 resubcl 11215 . . . . 5 (((2 · (⌊‘𝑁)) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · (⌊‘𝑁)) − 3) ∈ ℝ)
5250, 29, 51sylancl 585 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((2 · (⌊‘𝑁)) − 3) ∈ ℝ)
53 remulcl 10887 . . . 4 (((log‘2) ∈ ℝ ∧ ((2 · (⌊‘𝑁)) − 3) ∈ ℝ) → ((log‘2) · ((2 · (⌊‘𝑁)) − 3)) ∈ ℝ)
547, 52, 53sylancr 586 . . 3 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((log‘2) · ((2 · (⌊‘𝑁)) − 3)) ∈ ℝ)
5538adantr 480 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((2 · 𝑁) − 3) ∈ ℝ)
56 remulcl 10887 . . . 4 (((log‘2) ∈ ℝ ∧ ((2 · 𝑁) − 3) ∈ ℝ) → ((log‘2) · ((2 · 𝑁) − 3)) ∈ ℝ)
577, 55, 56sylancr 586 . . 3 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((log‘2) · ((2 · 𝑁) − 3)) ∈ ℝ)
5815adantr 480 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (θ‘(⌊‘𝑁)) = (θ‘𝑁))
59 simpr 484 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (⌊‘𝑁) ∈ (ℤ‘(2 + 1)))
60 df-3 11967 . . . . . . 7 3 = (2 + 1)
6160fveq2i 6759 . . . . . 6 (ℤ‘3) = (ℤ‘(2 + 1))
6259, 61eleqtrrdi 2850 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (⌊‘𝑁) ∈ (ℤ‘3))
63 fveq2 6756 . . . . . . 7 (𝑘 = (⌊‘𝑁) → (θ‘𝑘) = (θ‘(⌊‘𝑁)))
64 oveq2 7263 . . . . . . . . 9 (𝑘 = (⌊‘𝑁) → (2 · 𝑘) = (2 · (⌊‘𝑁)))
6564oveq1d 7270 . . . . . . . 8 (𝑘 = (⌊‘𝑁) → ((2 · 𝑘) − 3) = ((2 · (⌊‘𝑁)) − 3))
6665oveq2d 7271 . . . . . . 7 (𝑘 = (⌊‘𝑁) → ((log‘2) · ((2 · 𝑘) − 3)) = ((log‘2) · ((2 · (⌊‘𝑁)) − 3)))
6763, 66breq12d 5083 . . . . . 6 (𝑘 = (⌊‘𝑁) → ((θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ (θ‘(⌊‘𝑁)) < ((log‘2) · ((2 · (⌊‘𝑁)) − 3))))
68 oveq2 7263 . . . . . . . 8 (𝑥 = 3 → (3...𝑥) = (3...3))
6968raleqdv 3339 . . . . . . 7 (𝑥 = 3 → (∀𝑘 ∈ (3...𝑥)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ ∀𝑘 ∈ (3...3)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
70 oveq2 7263 . . . . . . . 8 (𝑥 = 𝑛 → (3...𝑥) = (3...𝑛))
7170raleqdv 3339 . . . . . . 7 (𝑥 = 𝑛 → (∀𝑘 ∈ (3...𝑥)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ ∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
72 oveq2 7263 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (3...𝑥) = (3...(𝑛 + 1)))
7372raleqdv 3339 . . . . . . 7 (𝑥 = (𝑛 + 1) → (∀𝑘 ∈ (3...𝑥)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ ∀𝑘 ∈ (3...(𝑛 + 1))(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
74 oveq2 7263 . . . . . . . 8 (𝑥 = (⌊‘𝑁) → (3...𝑥) = (3...(⌊‘𝑁)))
7574raleqdv 3339 . . . . . . 7 (𝑥 = (⌊‘𝑁) → (∀𝑘 ∈ (3...𝑥)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ ∀𝑘 ∈ (3...(⌊‘𝑁))(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
76 6lt8 12096 . . . . . . . . . . 11 6 < 8
77 6re 11993 . . . . . . . . . . . . 13 6 ∈ ℝ
78 6pos 12013 . . . . . . . . . . . . 13 0 < 6
7977, 78elrpii 12662 . . . . . . . . . . . 12 6 ∈ ℝ+
80 8re 11999 . . . . . . . . . . . . 13 8 ∈ ℝ
81 8pos 12015 . . . . . . . . . . . . 13 0 < 8
8280, 81elrpii 12662 . . . . . . . . . . . 12 8 ∈ ℝ+
83 logltb 25660 . . . . . . . . . . . 12 ((6 ∈ ℝ+ ∧ 8 ∈ ℝ+) → (6 < 8 ↔ (log‘6) < (log‘8)))
8479, 82, 83mp2an 688 . . . . . . . . . . 11 (6 < 8 ↔ (log‘6) < (log‘8))
8576, 84mpbi 229 . . . . . . . . . 10 (log‘6) < (log‘8)
8685a1i 11 . . . . . . . . 9 (𝑘 ∈ (3...3) → (log‘6) < (log‘8))
87 elfz1eq 13196 . . . . . . . . . . 11 (𝑘 ∈ (3...3) → 𝑘 = 3)
8887fveq2d 6760 . . . . . . . . . 10 (𝑘 ∈ (3...3) → (θ‘𝑘) = (θ‘3))
89 cht3 26227 . . . . . . . . . 10 (θ‘3) = (log‘6)
9088, 89eqtrdi 2795 . . . . . . . . 9 (𝑘 ∈ (3...3) → (θ‘𝑘) = (log‘6))
9187oveq2d 7271 . . . . . . . . . . . . 13 (𝑘 ∈ (3...3) → (2 · 𝑘) = (2 · 3))
9291oveq1d 7270 . . . . . . . . . . . 12 (𝑘 ∈ (3...3) → ((2 · 𝑘) − 3) = ((2 · 3) − 3))
93 3cn 11984 . . . . . . . . . . . . 13 3 ∈ ℂ
94932timesi 12041 . . . . . . . . . . . . 13 (2 · 3) = (3 + 3)
9593, 93, 94mvrraddi 11168 . . . . . . . . . . . 12 ((2 · 3) − 3) = 3
9692, 95eqtrdi 2795 . . . . . . . . . . 11 (𝑘 ∈ (3...3) → ((2 · 𝑘) − 3) = 3)
9796oveq2d 7271 . . . . . . . . . 10 (𝑘 ∈ (3...3) → ((log‘2) · ((2 · 𝑘) − 3)) = ((log‘2) · 3))
98 2rp 12664 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
99 relogcl 25636 . . . . . . . . . . . . . . 15 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
10098, 99ax-mp 5 . . . . . . . . . . . . . 14 (log‘2) ∈ ℝ
101100recni 10920 . . . . . . . . . . . . 13 (log‘2) ∈ ℂ
102101, 93mulcomi 10914 . . . . . . . . . . . 12 ((log‘2) · 3) = (3 · (log‘2))
103 3z 12283 . . . . . . . . . . . . 13 3 ∈ ℤ
104 relogexp 25656 . . . . . . . . . . . . 13 ((2 ∈ ℝ+ ∧ 3 ∈ ℤ) → (log‘(2↑3)) = (3 · (log‘2)))
10598, 103, 104mp2an 688 . . . . . . . . . . . 12 (log‘(2↑3)) = (3 · (log‘2))
106102, 105eqtr4i 2769 . . . . . . . . . . 11 ((log‘2) · 3) = (log‘(2↑3))
107 cu2 13845 . . . . . . . . . . . 12 (2↑3) = 8
108107fveq2i 6759 . . . . . . . . . . 11 (log‘(2↑3)) = (log‘8)
109106, 108eqtri 2766 . . . . . . . . . 10 ((log‘2) · 3) = (log‘8)
11097, 109eqtrdi 2795 . . . . . . . . 9 (𝑘 ∈ (3...3) → ((log‘2) · ((2 · 𝑘) − 3)) = (log‘8))
11186, 90, 1103brtr4d 5102 . . . . . . . 8 (𝑘 ∈ (3...3) → (θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)))
112111rgen 3073 . . . . . . 7 𝑘 ∈ (3...3)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))
113 df-2 11966 . . . . . . . . . . . . . . . . . 18 2 = (1 + 1)
114 2div2e1 12044 . . . . . . . . . . . . . . . . . . . 20 (2 / 2) = 1
115 eluzle 12524 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℤ‘3) → 3 ≤ 𝑛)
11660, 115eqbrtrrid 5106 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (ℤ‘3) → (2 + 1) ≤ 𝑛)
117 2z 12282 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℤ
118 eluzelz 12521 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ ℤ)
119 zltp1le 12300 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 < 𝑛 ↔ (2 + 1) ≤ 𝑛))
120117, 118, 119sylancr 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (ℤ‘3) → (2 < 𝑛 ↔ (2 + 1) ≤ 𝑛))
121116, 120mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (ℤ‘3) → 2 < 𝑛)
122 eluzelre 12522 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ ℝ)
123 ltdiv1 11769 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (2 < 𝑛 ↔ (2 / 2) < (𝑛 / 2)))
1241, 23, 123mp3an13 1450 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℝ → (2 < 𝑛 ↔ (2 / 2) < (𝑛 / 2)))
125122, 124syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (ℤ‘3) → (2 < 𝑛 ↔ (2 / 2) < (𝑛 / 2)))
126121, 125mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ‘3) → (2 / 2) < (𝑛 / 2))
127114, 126eqbrtrrid 5106 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ‘3) → 1 < (𝑛 / 2))
128122rehalfcld 12150 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ‘3) → (𝑛 / 2) ∈ ℝ)
129 1re 10906 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
130 ltadd1 11372 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ ∧ (𝑛 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → (1 < (𝑛 / 2) ↔ (1 + 1) < ((𝑛 / 2) + 1)))
131129, 129, 130mp3an13 1450 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 / 2) ∈ ℝ → (1 < (𝑛 / 2) ↔ (1 + 1) < ((𝑛 / 2) + 1)))
132128, 131syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ‘3) → (1 < (𝑛 / 2) ↔ (1 + 1) < ((𝑛 / 2) + 1)))
133127, 132mpbid 231 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘3) → (1 + 1) < ((𝑛 / 2) + 1))
134113, 133eqbrtrid 5105 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → 2 < ((𝑛 / 2) + 1))
135134adantr 480 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → 2 < ((𝑛 / 2) + 1))
136 peano2z 12291 . . . . . . . . . . . . . . . . . 18 ((𝑛 / 2) ∈ ℤ → ((𝑛 / 2) + 1) ∈ ℤ)
137136adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 / 2) + 1) ∈ ℤ)
138 zltp1le 12300 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ ((𝑛 / 2) + 1) ∈ ℤ) → (2 < ((𝑛 / 2) + 1) ↔ (2 + 1) ≤ ((𝑛 / 2) + 1)))
139117, 137, 138sylancr 586 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 < ((𝑛 / 2) + 1) ↔ (2 + 1) ≤ ((𝑛 / 2) + 1)))
140135, 139mpbid 231 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 + 1) ≤ ((𝑛 / 2) + 1))
14160, 140eqbrtrid 5105 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → 3 ≤ ((𝑛 / 2) + 1))
142 1red 10907 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → 1 ∈ ℝ)
143 ltle 10994 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ (𝑛 / 2) ∈ ℝ) → (1 < (𝑛 / 2) → 1 ≤ (𝑛 / 2)))
144129, 128, 143sylancr 586 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘3) → (1 < (𝑛 / 2) → 1 ≤ (𝑛 / 2)))
145127, 144mpd 15 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → 1 ≤ (𝑛 / 2))
146142, 128, 128, 145leadd2dd 11520 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → ((𝑛 / 2) + 1) ≤ ((𝑛 / 2) + (𝑛 / 2)))
147122recnd 10934 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ ℂ)
1481472halvesd 12149 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → ((𝑛 / 2) + (𝑛 / 2)) = 𝑛)
149146, 148breqtrd 5096 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘3) → ((𝑛 / 2) + 1) ≤ 𝑛)
150149adantr 480 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 / 2) + 1) ≤ 𝑛)
151 elfz 13174 . . . . . . . . . . . . . . . 16 ((((𝑛 / 2) + 1) ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑛 / 2) + 1) ∈ (3...𝑛) ↔ (3 ≤ ((𝑛 / 2) + 1) ∧ ((𝑛 / 2) + 1) ≤ 𝑛)))
152103, 151mp3an2 1447 . . . . . . . . . . . . . . 15 ((((𝑛 / 2) + 1) ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((𝑛 / 2) + 1) ∈ (3...𝑛) ↔ (3 ≤ ((𝑛 / 2) + 1) ∧ ((𝑛 / 2) + 1) ≤ 𝑛)))
153136, 118, 152syl2anr 596 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (((𝑛 / 2) + 1) ∈ (3...𝑛) ↔ (3 ≤ ((𝑛 / 2) + 1) ∧ ((𝑛 / 2) + 1) ≤ 𝑛)))
154141, 150, 153mpbir2and 709 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 / 2) + 1) ∈ (3...𝑛))
155 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑘 = ((𝑛 / 2) + 1) → (θ‘𝑘) = (θ‘((𝑛 / 2) + 1)))
156 oveq2 7263 . . . . . . . . . . . . . . . . 17 (𝑘 = ((𝑛 / 2) + 1) → (2 · 𝑘) = (2 · ((𝑛 / 2) + 1)))
157156oveq1d 7270 . . . . . . . . . . . . . . . 16 (𝑘 = ((𝑛 / 2) + 1) → ((2 · 𝑘) − 3) = ((2 · ((𝑛 / 2) + 1)) − 3))
158157oveq2d 7271 . . . . . . . . . . . . . . 15 (𝑘 = ((𝑛 / 2) + 1) → ((log‘2) · ((2 · 𝑘) − 3)) = ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3)))
159155, 158breq12d 5083 . . . . . . . . . . . . . 14 (𝑘 = ((𝑛 / 2) + 1) → ((θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ (θ‘((𝑛 / 2) + 1)) < ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3))))
160159rspcv 3547 . . . . . . . . . . . . 13 (((𝑛 / 2) + 1) ∈ (3...𝑛) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘((𝑛 / 2) + 1)) < ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3))))
161154, 160syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘((𝑛 / 2) + 1)) < ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3))))
162128recnd 10934 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (ℤ‘3) → (𝑛 / 2) ∈ ℂ)
163162adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (𝑛 / 2) ∈ ℂ)
164 2cn 11978 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℂ
165 ax-1cn 10860 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
166 adddi 10891 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℂ ∧ (𝑛 / 2) ∈ ℂ ∧ 1 ∈ ℂ) → (2 · ((𝑛 / 2) + 1)) = ((2 · (𝑛 / 2)) + (2 · 1)))
167164, 165, 166mp3an13 1450 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 / 2) ∈ ℂ → (2 · ((𝑛 / 2) + 1)) = ((2 · (𝑛 / 2)) + (2 · 1)))
168163, 167syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · ((𝑛 / 2) + 1)) = ((2 · (𝑛 / 2)) + (2 · 1)))
169147adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → 𝑛 ∈ ℂ)
170 2ne0 12007 . . . . . . . . . . . . . . . . . . . . . 22 2 ≠ 0
171 divcan2 11571 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝑛 / 2)) = 𝑛)
172164, 170, 171mp3an23 1451 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℂ → (2 · (𝑛 / 2)) = 𝑛)
173169, 172syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · (𝑛 / 2)) = 𝑛)
174164mulid1i 10910 . . . . . . . . . . . . . . . . . . . . 21 (2 · 1) = 2
175174a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · 1) = 2)
176173, 175oveq12d 7273 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · (𝑛 / 2)) + (2 · 1)) = (𝑛 + 2))
177168, 176eqtrd 2778 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · ((𝑛 / 2) + 1)) = (𝑛 + 2))
178177oveq1d 7270 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · ((𝑛 / 2) + 1)) − 3) = ((𝑛 + 2) − 3))
179 subsub3 11183 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℂ ∧ 3 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑛 − (3 − 2)) = ((𝑛 + 2) − 3))
18093, 164, 179mp3an23 1451 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℂ → (𝑛 − (3 − 2)) = ((𝑛 + 2) − 3))
181169, 180syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (𝑛 − (3 − 2)) = ((𝑛 + 2) − 3))
182 2p1e3 12045 . . . . . . . . . . . . . . . . . . . 20 (2 + 1) = 3
18393, 164, 165, 182subaddrii 11240 . . . . . . . . . . . . . . . . . . 19 (3 − 2) = 1
184183oveq2i 7266 . . . . . . . . . . . . . . . . . 18 (𝑛 − (3 − 2)) = (𝑛 − 1)
185181, 184eqtr3di 2794 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 + 2) − 3) = (𝑛 − 1))
186178, 185eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · ((𝑛 / 2) + 1)) − 3) = (𝑛 − 1))
187186oveq2d 7271 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3)) = ((log‘2) · (𝑛 − 1)))
188187breq2d 5082 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((θ‘((𝑛 / 2) + 1)) < ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3)) ↔ (θ‘((𝑛 / 2) + 1)) < ((log‘2) · (𝑛 − 1))))
189137zred 12355 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 / 2) + 1) ∈ ℝ)
190 chtcl 26163 . . . . . . . . . . . . . . . 16 (((𝑛 / 2) + 1) ∈ ℝ → (θ‘((𝑛 / 2) + 1)) ∈ ℝ)
191189, 190syl 17 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (θ‘((𝑛 / 2) + 1)) ∈ ℝ)
192122adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → 𝑛 ∈ ℝ)
193 peano2rem 11218 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
194192, 193syl 17 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (𝑛 − 1) ∈ ℝ)
195 remulcl 10887 . . . . . . . . . . . . . . . 16 (((log‘2) ∈ ℝ ∧ (𝑛 − 1) ∈ ℝ) → ((log‘2) · (𝑛 − 1)) ∈ ℝ)
196100, 194, 195sylancr 586 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘2) · (𝑛 − 1)) ∈ ℝ)
197 remulcl 10887 . . . . . . . . . . . . . . . 16 (((log‘2) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((log‘2) · 𝑛) ∈ ℝ)
198100, 192, 197sylancr 586 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘2) · 𝑛) ∈ ℝ)
199191, 196, 198ltadd1d 11498 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((θ‘((𝑛 / 2) + 1)) < ((log‘2) · (𝑛 − 1)) ↔ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) < (((log‘2) · (𝑛 − 1)) + ((log‘2) · 𝑛))))
200101a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (log‘2) ∈ ℂ)
201194recnd 10934 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (𝑛 − 1) ∈ ℂ)
202200, 201, 169adddid 10930 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘2) · ((𝑛 − 1) + 𝑛)) = (((log‘2) · (𝑛 − 1)) + ((log‘2) · 𝑛)))
203 adddi 10891 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
204164, 165, 203mp3an13 1450 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℂ → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
205169, 204syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
206174oveq2i 7266 . . . . . . . . . . . . . . . . . . . 20 ((2 · 𝑛) + (2 · 1)) = ((2 · 𝑛) + 2)
207205, 206eqtrdi 2795 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · (𝑛 + 1)) = ((2 · 𝑛) + 2))
208207oveq1d 7270 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · (𝑛 + 1)) − 3) = (((2 · 𝑛) + 2) − 3))
209 zmulcl 12299 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
210117, 118, 209sylancr 586 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (ℤ‘3) → (2 · 𝑛) ∈ ℤ)
211210zcnd 12356 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ‘3) → (2 · 𝑛) ∈ ℂ)
212211adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · 𝑛) ∈ ℂ)
213 subsub3 11183 . . . . . . . . . . . . . . . . . . . 20 (((2 · 𝑛) ∈ ℂ ∧ 3 ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · 𝑛) − (3 − 2)) = (((2 · 𝑛) + 2) − 3))
21493, 164, 213mp3an23 1451 . . . . . . . . . . . . . . . . . . 19 ((2 · 𝑛) ∈ ℂ → ((2 · 𝑛) − (3 − 2)) = (((2 · 𝑛) + 2) − 3))
215212, 214syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · 𝑛) − (3 − 2)) = (((2 · 𝑛) + 2) − 3))
216183oveq2i 7266 . . . . . . . . . . . . . . . . . . 19 ((2 · 𝑛) − (3 − 2)) = ((2 · 𝑛) − 1)
2171692timesd 12146 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (2 · 𝑛) = (𝑛 + 𝑛))
218217oveq1d 7270 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · 𝑛) − 1) = ((𝑛 + 𝑛) − 1))
219165a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → 1 ∈ ℂ)
220169, 169, 219addsubd 11283 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 + 𝑛) − 1) = ((𝑛 − 1) + 𝑛))
221218, 220eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · 𝑛) − 1) = ((𝑛 − 1) + 𝑛))
222216, 221syl5eq 2791 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · 𝑛) − (3 − 2)) = ((𝑛 − 1) + 𝑛))
223208, 215, 2223eqtr2rd 2785 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 − 1) + 𝑛) = ((2 · (𝑛 + 1)) − 3))
224223oveq2d 7271 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘2) · ((𝑛 − 1) + 𝑛)) = ((log‘2) · ((2 · (𝑛 + 1)) − 3)))
225202, 224eqtr3d 2780 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (((log‘2) · (𝑛 − 1)) + ((log‘2) · 𝑛)) = ((log‘2) · ((2 · (𝑛 + 1)) − 3)))
226225breq2d 5082 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) < (((log‘2) · (𝑛 − 1)) + ((log‘2) · 𝑛)) ↔ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
227188, 199, 2263bitrd 304 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((θ‘((𝑛 / 2) + 1)) < ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3)) ↔ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
228 3nn 11982 . . . . . . . . . . . . . . . . 17 3 ∈ ℕ
229 elfzuz 13181 . . . . . . . . . . . . . . . . . 18 (((𝑛 / 2) + 1) ∈ (3...𝑛) → ((𝑛 / 2) + 1) ∈ (ℤ‘3))
230154, 229syl 17 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 / 2) + 1) ∈ (ℤ‘3))
231 eluznn 12587 . . . . . . . . . . . . . . . . 17 ((3 ∈ ℕ ∧ ((𝑛 / 2) + 1) ∈ (ℤ‘3)) → ((𝑛 / 2) + 1) ∈ ℕ)
232228, 230, 231sylancr 586 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 / 2) + 1) ∈ ℕ)
233 chtublem 26264 . . . . . . . . . . . . . . . 16 (((𝑛 / 2) + 1) ∈ ℕ → (θ‘((2 · ((𝑛 / 2) + 1)) − 1)) ≤ ((θ‘((𝑛 / 2) + 1)) + ((log‘4) · (((𝑛 / 2) + 1) − 1))))
234232, 233syl 17 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (θ‘((2 · ((𝑛 / 2) + 1)) − 1)) ≤ ((θ‘((𝑛 / 2) + 1)) + ((log‘4) · (((𝑛 / 2) + 1) − 1))))
235177oveq1d 7270 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · ((𝑛 / 2) + 1)) − 1) = ((𝑛 + 2) − 1))
236 addsubass 11161 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 2) − 1) = (𝑛 + (2 − 1)))
237164, 165, 236mp3an23 1451 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℂ → ((𝑛 + 2) − 1) = (𝑛 + (2 − 1)))
238169, 237syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 + 2) − 1) = (𝑛 + (2 − 1)))
239 2m1e1 12029 . . . . . . . . . . . . . . . . . . 19 (2 − 1) = 1
240239oveq2i 7266 . . . . . . . . . . . . . . . . . 18 (𝑛 + (2 − 1)) = (𝑛 + 1)
241238, 240eqtrdi 2795 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((𝑛 + 2) − 1) = (𝑛 + 1))
242235, 241eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · ((𝑛 / 2) + 1)) − 1) = (𝑛 + 1))
243242fveq2d 6760 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (θ‘((2 · ((𝑛 / 2) + 1)) − 1)) = (θ‘(𝑛 + 1)))
244 pncan 11157 . . . . . . . . . . . . . . . . . . 19 (((𝑛 / 2) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑛 / 2) + 1) − 1) = (𝑛 / 2))
245163, 165, 244sylancl 585 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (((𝑛 / 2) + 1) − 1) = (𝑛 / 2))
246245oveq2d 7271 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘4) · (((𝑛 / 2) + 1) − 1)) = ((log‘4) · (𝑛 / 2)))
247 relogexp 25656 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘(2↑2)) = (2 · (log‘2)))
24898, 117, 247mp2an 688 . . . . . . . . . . . . . . . . . . . 20 (log‘(2↑2)) = (2 · (log‘2))
249 sq2 13842 . . . . . . . . . . . . . . . . . . . . 21 (2↑2) = 4
250249fveq2i 6759 . . . . . . . . . . . . . . . . . . . 20 (log‘(2↑2)) = (log‘4)
251164, 101mulcomi 10914 . . . . . . . . . . . . . . . . . . . 20 (2 · (log‘2)) = ((log‘2) · 2)
252248, 250, 2513eqtr3i 2774 . . . . . . . . . . . . . . . . . . 19 (log‘4) = ((log‘2) · 2)
253252oveq1i 7265 . . . . . . . . . . . . . . . . . 18 ((log‘4) · (𝑛 / 2)) = (((log‘2) · 2) · (𝑛 / 2))
254164a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → 2 ∈ ℂ)
255200, 254, 163mulassd 10929 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (((log‘2) · 2) · (𝑛 / 2)) = ((log‘2) · (2 · (𝑛 / 2))))
256253, 255syl5eq 2791 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘4) · (𝑛 / 2)) = ((log‘2) · (2 · (𝑛 / 2))))
257173oveq2d 7271 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘2) · (2 · (𝑛 / 2))) = ((log‘2) · 𝑛))
258246, 256, 2573eqtrd 2782 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘4) · (((𝑛 / 2) + 1) − 1)) = ((log‘2) · 𝑛))
259258oveq2d 7271 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((θ‘((𝑛 / 2) + 1)) + ((log‘4) · (((𝑛 / 2) + 1) − 1))) = ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)))
260234, 243, 2593brtr3d 5101 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (θ‘(𝑛 + 1)) ≤ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)))
261 peano2uz 12570 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ‘3) → (𝑛 + 1) ∈ (ℤ‘3))
262 eluzelz 12521 . . . . . . . . . . . . . . . . . . 19 ((𝑛 + 1) ∈ (ℤ‘3) → (𝑛 + 1) ∈ ℤ)
263261, 262syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘3) → (𝑛 + 1) ∈ ℤ)
264263zred 12355 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → (𝑛 + 1) ∈ ℝ)
265264adantr 480 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (𝑛 + 1) ∈ ℝ)
266 chtcl 26163 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ ℝ → (θ‘(𝑛 + 1)) ∈ ℝ)
267265, 266syl 17 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (θ‘(𝑛 + 1)) ∈ ℝ)
268191, 198readdcld 10935 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) ∈ ℝ)
269 zmulcl 12299 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℤ ∧ (𝑛 + 1) ∈ ℤ) → (2 · (𝑛 + 1)) ∈ ℤ)
270117, 263, 269sylancr 586 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ‘3) → (2 · (𝑛 + 1)) ∈ ℤ)
271270zred 12355 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘3) → (2 · (𝑛 + 1)) ∈ ℝ)
272 resubcl 11215 . . . . . . . . . . . . . . . . . 18 (((2 · (𝑛 + 1)) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · (𝑛 + 1)) − 3) ∈ ℝ)
273271, 29, 272sylancl 585 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → ((2 · (𝑛 + 1)) − 3) ∈ ℝ)
274273adantr 480 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((2 · (𝑛 + 1)) − 3) ∈ ℝ)
275 remulcl 10887 . . . . . . . . . . . . . . . 16 (((log‘2) ∈ ℝ ∧ ((2 · (𝑛 + 1)) − 3) ∈ ℝ) → ((log‘2) · ((2 · (𝑛 + 1)) − 3)) ∈ ℝ)
276100, 274, 275sylancr 586 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((log‘2) · ((2 · (𝑛 + 1)) − 3)) ∈ ℝ)
277 lelttr 10996 . . . . . . . . . . . . . . 15 (((θ‘(𝑛 + 1)) ∈ ℝ ∧ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) ∈ ℝ ∧ ((log‘2) · ((2 · (𝑛 + 1)) − 3)) ∈ ℝ) → (((θ‘(𝑛 + 1)) ≤ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) ∧ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
278267, 268, 276, 277syl3anc 1369 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (((θ‘(𝑛 + 1)) ≤ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) ∧ ((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
279260, 278mpand 691 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (((θ‘((𝑛 / 2) + 1)) + ((log‘2) · 𝑛)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3)) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
280227, 279sylbid 239 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → ((θ‘((𝑛 / 2) + 1)) < ((log‘2) · ((2 · ((𝑛 / 2) + 1)) − 3)) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
281161, 280syld 47 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 / 2) ∈ ℤ) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
282 eluzfz2 13193 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘3) → 𝑛 ∈ (3...𝑛))
283 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (θ‘𝑘) = (θ‘𝑛))
284 oveq2 7263 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛))
285284oveq1d 7270 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → ((2 · 𝑘) − 3) = ((2 · 𝑛) − 3))
286285oveq2d 7271 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → ((log‘2) · ((2 · 𝑘) − 3)) = ((log‘2) · ((2 · 𝑛) − 3)))
287283, 286breq12d 5083 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ (θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3))))
288287rspcv 3547 . . . . . . . . . . . . . 14 (𝑛 ∈ (3...𝑛) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3))))
289282, 288syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ‘3) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3))))
290289adantr 480 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘3) ∧ ((𝑛 + 1) / 2) ∈ ℤ) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3))))
291210zred 12355 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → (2 · 𝑛) ∈ ℝ)
29229a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → 3 ∈ ℝ)
293122ltp1d 11835 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘3) → 𝑛 < (𝑛 + 1))
29423a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ‘3) → (2 ∈ ℝ ∧ 0 < 2))
295 ltmul2 11756 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑛 < (𝑛 + 1) ↔ (2 · 𝑛) < (2 · (𝑛 + 1))))
296122, 264, 294, 295syl3anc 1369 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘3) → (𝑛 < (𝑛 + 1) ↔ (2 · 𝑛) < (2 · (𝑛 + 1))))
297293, 296mpbid 231 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → (2 · 𝑛) < (2 · (𝑛 + 1)))
298291, 271, 292, 297ltsub1dd 11517 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → ((2 · 𝑛) − 3) < ((2 · (𝑛 + 1)) − 3))
299 resubcl 11215 . . . . . . . . . . . . . . . . . 18 (((2 · 𝑛) ∈ ℝ ∧ 3 ∈ ℝ) → ((2 · 𝑛) − 3) ∈ ℝ)
300291, 29, 299sylancl 585 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → ((2 · 𝑛) − 3) ∈ ℝ)
3016a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
302 ltmul2 11756 . . . . . . . . . . . . . . . . 17 ((((2 · 𝑛) − 3) ∈ ℝ ∧ ((2 · (𝑛 + 1)) − 3) ∈ ℝ ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (((2 · 𝑛) − 3) < ((2 · (𝑛 + 1)) − 3) ↔ ((log‘2) · ((2 · 𝑛) − 3)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
303300, 273, 301, 302syl3anc 1369 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → (((2 · 𝑛) − 3) < ((2 · (𝑛 + 1)) − 3) ↔ ((log‘2) · ((2 · 𝑛) − 3)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
304298, 303mpbid 231 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘3) → ((log‘2) · ((2 · 𝑛) − 3)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3)))
305 chtcl 26163 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℝ → (θ‘𝑛) ∈ ℝ)
306122, 305syl 17 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → (θ‘𝑛) ∈ ℝ)
307 remulcl 10887 . . . . . . . . . . . . . . . . 17 (((log‘2) ∈ ℝ ∧ ((2 · 𝑛) − 3) ∈ ℝ) → ((log‘2) · ((2 · 𝑛) − 3)) ∈ ℝ)
308100, 300, 307sylancr 586 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → ((log‘2) · ((2 · 𝑛) − 3)) ∈ ℝ)
309100, 273, 275sylancr 586 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → ((log‘2) · ((2 · (𝑛 + 1)) − 3)) ∈ ℝ)
310 lttr 10982 . . . . . . . . . . . . . . . 16 (((θ‘𝑛) ∈ ℝ ∧ ((log‘2) · ((2 · 𝑛) − 3)) ∈ ℝ ∧ ((log‘2) · ((2 · (𝑛 + 1)) − 3)) ∈ ℝ) → (((θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3)) ∧ ((log‘2) · ((2 · 𝑛) − 3)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))) → (θ‘𝑛) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
311306, 308, 309, 310syl3anc 1369 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘3) → (((θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3)) ∧ ((log‘2) · ((2 · 𝑛) − 3)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))) → (θ‘𝑛) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
312304, 311mpan2d 690 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘3) → ((θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3)) → (θ‘𝑛) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
313312adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘3) ∧ ((𝑛 + 1) / 2) ∈ ℤ) → ((θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3)) → (θ‘𝑛) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
314 evend2 15994 . . . . . . . . . . . . . . . . . 18 ((𝑛 + 1) ∈ ℤ → (2 ∥ (𝑛 + 1) ↔ ((𝑛 + 1) / 2) ∈ ℤ))
315263, 314syl 17 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → (2 ∥ (𝑛 + 1) ↔ ((𝑛 + 1) / 2) ∈ ℤ))
316 2lt3 12075 . . . . . . . . . . . . . . . . . . . . . . . 24 2 < 3
3171, 29ltnlei 11026 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 < 3 ↔ ¬ 3 ≤ 2)
318316, 317mpbi 229 . . . . . . . . . . . . . . . . . . . . . . 23 ¬ 3 ≤ 2
319 breq2 5074 . . . . . . . . . . . . . . . . . . . . . . 23 (2 = (𝑛 + 1) → (3 ≤ 2 ↔ 3 ≤ (𝑛 + 1)))
320318, 319mtbii 325 . . . . . . . . . . . . . . . . . . . . . 22 (2 = (𝑛 + 1) → ¬ 3 ≤ (𝑛 + 1))
321 eluzle 12524 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 + 1) ∈ (ℤ‘3) → 3 ≤ (𝑛 + 1))
322261, 321syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (ℤ‘3) → 3 ≤ (𝑛 + 1))
323320, 322nsyl3 138 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (ℤ‘3) → ¬ 2 = (𝑛 + 1))
324323adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 + 1) ∈ ℙ) → ¬ 2 = (𝑛 + 1))
325 uzid 12526 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
326117, 325ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ (ℤ‘2)
327 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 + 1) ∈ ℙ) → (𝑛 + 1) ∈ ℙ)
328 dvdsprm 16336 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ (ℤ‘2) ∧ (𝑛 + 1) ∈ ℙ) → (2 ∥ (𝑛 + 1) ↔ 2 = (𝑛 + 1)))
329326, 327, 328sylancr 586 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 + 1) ∈ ℙ) → (2 ∥ (𝑛 + 1) ↔ 2 = (𝑛 + 1)))
330324, 329mtbird 324 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ (ℤ‘3) ∧ (𝑛 + 1) ∈ ℙ) → ¬ 2 ∥ (𝑛 + 1))
331330ex 412 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘3) → ((𝑛 + 1) ∈ ℙ → ¬ 2 ∥ (𝑛 + 1)))
332331con2d 134 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ‘3) → (2 ∥ (𝑛 + 1) → ¬ (𝑛 + 1) ∈ ℙ))
333315, 332sylbird 259 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ‘3) → (((𝑛 + 1) / 2) ∈ ℤ → ¬ (𝑛 + 1) ∈ ℙ))
334333imp 406 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘3) ∧ ((𝑛 + 1) / 2) ∈ ℤ) → ¬ (𝑛 + 1) ∈ ℙ)
335 chtnprm 26208 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℤ ∧ ¬ (𝑛 + 1) ∈ ℙ) → (θ‘(𝑛 + 1)) = (θ‘𝑛))
336118, 334, 335syl2an2r 681 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ‘3) ∧ ((𝑛 + 1) / 2) ∈ ℤ) → (θ‘(𝑛 + 1)) = (θ‘𝑛))
337336breq1d 5080 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘3) ∧ ((𝑛 + 1) / 2) ∈ ℤ) → ((θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3)) ↔ (θ‘𝑛) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
338313, 337sylibrd 258 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘3) ∧ ((𝑛 + 1) / 2) ∈ ℤ) → ((θ‘𝑛) < ((log‘2) · ((2 · 𝑛) − 3)) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
339290, 338syld 47 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘3) ∧ ((𝑛 + 1) / 2) ∈ ℤ) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
340 zeo 12336 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → ((𝑛 / 2) ∈ ℤ ∨ ((𝑛 + 1) / 2) ∈ ℤ))
341118, 340syl 17 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘3) → ((𝑛 / 2) ∈ ℤ ∨ ((𝑛 + 1) / 2) ∈ ℤ))
342281, 339, 341mpjaodan 955 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘3) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
343 ovex 7288 . . . . . . . . . . 11 (𝑛 + 1) ∈ V
344 fveq2 6756 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (θ‘𝑘) = (θ‘(𝑛 + 1)))
345 oveq2 7263 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → (2 · 𝑘) = (2 · (𝑛 + 1)))
346345oveq1d 7270 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → ((2 · 𝑘) − 3) = ((2 · (𝑛 + 1)) − 3))
347346oveq2d 7271 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((log‘2) · ((2 · 𝑘) − 3)) = ((log‘2) · ((2 · (𝑛 + 1)) − 3)))
348344, 347breq12d 5083 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → ((θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3))))
349343, 348ralsn 4614 . . . . . . . . . 10 (∀𝑘 ∈ {(𝑛 + 1)} (θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ (θ‘(𝑛 + 1)) < ((log‘2) · ((2 · (𝑛 + 1)) − 3)))
350342, 349syl6ibr 251 . . . . . . . . 9 (𝑛 ∈ (ℤ‘3) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → ∀𝑘 ∈ {(𝑛 + 1)} (θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
351350ancld 550 . . . . . . . 8 (𝑛 ∈ (ℤ‘3) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ∧ ∀𝑘 ∈ {(𝑛 + 1)} (θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)))))
352 ralun 4122 . . . . . . . . 9 ((∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ∧ ∀𝑘 ∈ {(𝑛 + 1)} (θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))) → ∀𝑘 ∈ ((3...𝑛) ∪ {(𝑛 + 1)})(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)))
353 fzsuc 13232 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘3) → (3...(𝑛 + 1)) = ((3...𝑛) ∪ {(𝑛 + 1)}))
354353raleqdv 3339 . . . . . . . . 9 (𝑛 ∈ (ℤ‘3) → (∀𝑘 ∈ (3...(𝑛 + 1))(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ↔ ∀𝑘 ∈ ((3...𝑛) ∪ {(𝑛 + 1)})(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
355352, 354syl5ibr 245 . . . . . . . 8 (𝑛 ∈ (ℤ‘3) → ((∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) ∧ ∀𝑘 ∈ {(𝑛 + 1)} (θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))) → ∀𝑘 ∈ (3...(𝑛 + 1))(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
356351, 355syld 47 . . . . . . 7 (𝑛 ∈ (ℤ‘3) → (∀𝑘 ∈ (3...𝑛)(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)) → ∀𝑘 ∈ (3...(𝑛 + 1))(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3))))
35769, 71, 73, 75, 112, 356uzind4i 12579 . . . . . 6 ((⌊‘𝑁) ∈ (ℤ‘3) → ∀𝑘 ∈ (3...(⌊‘𝑁))(θ‘𝑘) < ((log‘2) · ((2 · 𝑘) − 3)))
358 eluzfz2 13193 . . . . . 6 ((⌊‘𝑁) ∈ (ℤ‘3) → (⌊‘𝑁) ∈ (3...(⌊‘𝑁)))
35967, 357, 358rspcdva 3554 . . . . 5 ((⌊‘𝑁) ∈ (ℤ‘3) → (θ‘(⌊‘𝑁)) < ((log‘2) · ((2 · (⌊‘𝑁)) − 3)))
36062, 359syl 17 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (θ‘(⌊‘𝑁)) < ((log‘2) · ((2 · (⌊‘𝑁)) − 3)))
36158, 360eqbrtrrd 5094 . . 3 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (θ‘𝑁) < ((log‘2) · ((2 · (⌊‘𝑁)) − 3)))
36233adantr 480 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (2 · 𝑁) ∈ ℝ)
36329a1i 11 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → 3 ∈ ℝ)
364 flle 13447 . . . . . . 7 (𝑁 ∈ ℝ → (⌊‘𝑁) ≤ 𝑁)
365364ad2antrr 722 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (⌊‘𝑁) ≤ 𝑁)
36621adantr 480 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → 𝑁 ∈ ℝ)
36723a1i 11 . . . . . . 7 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (2 ∈ ℝ ∧ 0 < 2))
368 lemul2 11758 . . . . . . 7 (((⌊‘𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((⌊‘𝑁) ≤ 𝑁 ↔ (2 · (⌊‘𝑁)) ≤ (2 · 𝑁)))
36948, 366, 367, 368syl3anc 1369 . . . . . 6 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((⌊‘𝑁) ≤ 𝑁 ↔ (2 · (⌊‘𝑁)) ≤ (2 · 𝑁)))
370365, 369mpbid 231 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (2 · (⌊‘𝑁)) ≤ (2 · 𝑁))
37150, 362, 363, 370lesub1dd 11521 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((2 · (⌊‘𝑁)) − 3) ≤ ((2 · 𝑁) − 3))
3726a1i 11 . . . . 5 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((log‘2) ∈ ℝ ∧ 0 < (log‘2)))
373 lemul2 11758 . . . . 5 ((((2 · (⌊‘𝑁)) − 3) ∈ ℝ ∧ ((2 · 𝑁) − 3) ∈ ℝ ∧ ((log‘2) ∈ ℝ ∧ 0 < (log‘2))) → (((2 · (⌊‘𝑁)) − 3) ≤ ((2 · 𝑁) − 3) ↔ ((log‘2) · ((2 · (⌊‘𝑁)) − 3)) ≤ ((log‘2) · ((2 · 𝑁) − 3))))
37452, 55, 372, 373syl3anc 1369 . . . 4 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (((2 · (⌊‘𝑁)) − 3) ≤ ((2 · 𝑁) − 3) ↔ ((log‘2) · ((2 · (⌊‘𝑁)) − 3)) ≤ ((log‘2) · ((2 · 𝑁) − 3))))
375371, 374mpbid 231 . . 3 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → ((log‘2) · ((2 · (⌊‘𝑁)) − 3)) ≤ ((log‘2) · ((2 · 𝑁) − 3)))
37646, 54, 57, 361, 375ltletrd 11065 . 2 (((𝑁 ∈ ℝ ∧ 2 < 𝑁) ∧ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))) → (θ‘𝑁) < ((log‘2) · ((2 · 𝑁) − 3)))
377117a1i 11 . . . 4 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → 2 ∈ ℤ)
378 flcl 13443 . . . . 5 (𝑁 ∈ ℝ → (⌊‘𝑁) ∈ ℤ)
379378adantr 480 . . . 4 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → (⌊‘𝑁) ∈ ℤ)
380 ltle 10994 . . . . . . 7 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 < 𝑁 → 2 ≤ 𝑁))
3811, 380mpan 686 . . . . . 6 (𝑁 ∈ ℝ → (2 < 𝑁 → 2 ≤ 𝑁))
382 flge 13453 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 2 ∈ ℤ) → (2 ≤ 𝑁 ↔ 2 ≤ (⌊‘𝑁)))
383117, 382mpan2 687 . . . . . 6 (𝑁 ∈ ℝ → (2 ≤ 𝑁 ↔ 2 ≤ (⌊‘𝑁)))
384381, 383sylibd 238 . . . . 5 (𝑁 ∈ ℝ → (2 < 𝑁 → 2 ≤ (⌊‘𝑁)))
385384imp 406 . . . 4 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → 2 ≤ (⌊‘𝑁))
386 eluz2 12517 . . . 4 ((⌊‘𝑁) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (⌊‘𝑁) ∈ ℤ ∧ 2 ≤ (⌊‘𝑁)))
387377, 379, 385, 386syl3anbrc 1341 . . 3 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → (⌊‘𝑁) ∈ (ℤ‘2))
388 uzp1 12548 . . 3 ((⌊‘𝑁) ∈ (ℤ‘2) → ((⌊‘𝑁) = 2 ∨ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))))
389387, 388syl 17 . 2 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → ((⌊‘𝑁) = 2 ∨ (⌊‘𝑁) ∈ (ℤ‘(2 + 1))))
39044, 376, 389mpjaodan 955 1 ((𝑁 ∈ ℝ ∧ 2 < 𝑁) → (θ‘𝑁) < ((log‘2) · ((2 · 𝑁) − 3)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  cun 3881  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  4c4 11960  6c6 11962  8c8 11964  cz 12249  cuz 12511  +crp 12659  ...cfz 13168  cfl 13438  cexp 13710  cdvds 15891  cprime 16304  logclog 25615  θccht 26145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cht 26151
This theorem is referenced by:  bposlem6  26342  chto1ub  26529
  Copyright terms: Public domain W3C validator