| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an3an | Structured version Visualization version GIF version | ||
| Description: mp3an 1463 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an3an.1 | ⊢ 𝜑 |
| mp3an3an.2 | ⊢ (𝜓 → 𝜒) |
| mp3an3an.3 | ⊢ (𝜃 → 𝜏) |
| mp3an3an.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| mp3an3an | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3an.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 2 | mp3an3an.3 | . 2 ⊢ (𝜃 → 𝜏) | |
| 3 | mp3an3an.1 | . . 3 ⊢ 𝜑 | |
| 4 | mp3an3an.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 3, 4 | mp3an1 1450 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜂) |
| 6 | 1, 2, 5 | syl2an 596 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3an2ani 1470 unfilem2 9232 rankelun 9804 mul02 11331 fnn0ind 12612 supminf 12873 nn0p1elfzo 13642 faclbnd5 14242 pfxccatin12lem3 14675 mulre 15065 divalglem0 16341 algcvga 16527 infpn2 16862 prmgaplem7 17006 blssioo 24718 i1fsub 25644 itg1sub 25645 coesub 26197 dgrsub 26213 sincosq1eq 26456 logtayl2 26606 cxploglim 26923 uspgr2v1e2w 29233 ftc1anclem6 37687 plusmod5ne 47341 io1ii 48904 |
| Copyright terms: Public domain | W3C validator |