MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an3an Structured version   Visualization version   GIF version

Theorem mp3an3an 1465
Description: mp3an 1459 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.)
Hypotheses
Ref Expression
mp3an3an.1 𝜑
mp3an3an.2 (𝜓𝜒)
mp3an3an.3 (𝜃𝜏)
mp3an3an.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
mp3an3an ((𝜓𝜃) → 𝜂)

Proof of Theorem mp3an3an
StepHypRef Expression
1 mp3an3an.2 . 2 (𝜓𝜒)
2 mp3an3an.3 . 2 (𝜃𝜏)
3 mp3an3an.1 . . 3 𝜑
4 mp3an3an.4 . . 3 ((𝜑𝜒𝜏) → 𝜂)
53, 4mp3an1 1446 . 2 ((𝜒𝜏) → 𝜂)
61, 2, 5syl2an 595 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  mp3an2ani  1466  unfilem2  9009  rankelun  9561  mul02  11083  fnn0ind  12349  supminf  12604  nn0p1elfzo  13358  faclbnd5  13940  pfxccatin12lem3  14373  mulre  14760  divalglem0  16030  algcvga  16212  infpn2  16542  prmgaplem7  16686  blssioo  23864  i1fsub  24778  itg1sub  24779  coesub  25323  dgrsub  25338  sincosq1eq  25574  logtayl2  25722  cxploglim  26032  uspgr2v1e2w  27521  ftc1anclem6  35782  io1ii  46102
  Copyright terms: Public domain W3C validator