| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an3an | Structured version Visualization version GIF version | ||
| Description: mp3an 1463 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an3an.1 | ⊢ 𝜑 |
| mp3an3an.2 | ⊢ (𝜓 → 𝜒) |
| mp3an3an.3 | ⊢ (𝜃 → 𝜏) |
| mp3an3an.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| mp3an3an | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3an.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 2 | mp3an3an.3 | . 2 ⊢ (𝜃 → 𝜏) | |
| 3 | mp3an3an.1 | . . 3 ⊢ 𝜑 | |
| 4 | mp3an3an.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 3, 4 | mp3an1 1450 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜂) |
| 6 | 1, 2, 5 | syl2an 596 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3an2ani 1470 unfilem2 9195 rankelun 9768 mul02 11294 fnn0ind 12575 supminf 12836 nn0p1elfzo 13605 faclbnd5 14205 pfxccatin12lem3 14638 mulre 15028 divalglem0 16304 algcvga 16490 infpn2 16825 prmgaplem7 16969 blssioo 24681 i1fsub 25607 itg1sub 25608 coesub 26160 dgrsub 26176 sincosq1eq 26419 logtayl2 26569 cxploglim 26886 uspgr2v1e2w 29200 ftc1anclem6 37698 plusmod5ne 47349 io1ii 48925 |
| Copyright terms: Public domain | W3C validator |