Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3an3an | Structured version Visualization version GIF version |
Description: mp3an 1460 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an3an.1 | ⊢ 𝜑 |
mp3an3an.2 | ⊢ (𝜓 → 𝜒) |
mp3an3an.3 | ⊢ (𝜃 → 𝜏) |
mp3an3an.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
mp3an3an | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3an.2 | . 2 ⊢ (𝜓 → 𝜒) | |
2 | mp3an3an.3 | . 2 ⊢ (𝜃 → 𝜏) | |
3 | mp3an3an.1 | . . 3 ⊢ 𝜑 | |
4 | mp3an3an.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 3, 4 | mp3an1 1447 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜂) |
6 | 1, 2, 5 | syl2an 596 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: mp3an2ani 1467 unfilem2 9079 rankelun 9630 mul02 11153 fnn0ind 12419 supminf 12675 nn0p1elfzo 13430 faclbnd5 14012 pfxccatin12lem3 14445 mulre 14832 divalglem0 16102 algcvga 16284 infpn2 16614 prmgaplem7 16758 blssioo 23958 i1fsub 24873 itg1sub 24874 coesub 25418 dgrsub 25433 sincosq1eq 25669 logtayl2 25817 cxploglim 26127 uspgr2v1e2w 27618 ftc1anclem6 35855 io1ii 46214 |
Copyright terms: Public domain | W3C validator |