MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an3an Structured version   Visualization version   GIF version

Theorem mp3an3an 1466
Description: mp3an 1460 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.)
Hypotheses
Ref Expression
mp3an3an.1 𝜑
mp3an3an.2 (𝜓𝜒)
mp3an3an.3 (𝜃𝜏)
mp3an3an.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
mp3an3an ((𝜓𝜃) → 𝜂)

Proof of Theorem mp3an3an
StepHypRef Expression
1 mp3an3an.2 . 2 (𝜓𝜒)
2 mp3an3an.3 . 2 (𝜃𝜏)
3 mp3an3an.1 . . 3 𝜑
4 mp3an3an.4 . . 3 ((𝜑𝜒𝜏) → 𝜂)
53, 4mp3an1 1447 . 2 ((𝜒𝜏) → 𝜂)
61, 2, 5syl2an 596 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  mp3an2ani  1467  unfilem2  9079  rankelun  9630  mul02  11153  fnn0ind  12419  supminf  12675  nn0p1elfzo  13430  faclbnd5  14012  pfxccatin12lem3  14445  mulre  14832  divalglem0  16102  algcvga  16284  infpn2  16614  prmgaplem7  16758  blssioo  23958  i1fsub  24873  itg1sub  24874  coesub  25418  dgrsub  25433  sincosq1eq  25669  logtayl2  25817  cxploglim  26127  uspgr2v1e2w  27618  ftc1anclem6  35855  io1ii  46214
  Copyright terms: Public domain W3C validator