MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an3an Structured version   Visualization version   GIF version

Theorem mp3an3an 1467
Description: mp3an 1461 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.)
Hypotheses
Ref Expression
mp3an3an.1 𝜑
mp3an3an.2 (𝜓𝜒)
mp3an3an.3 (𝜃𝜏)
mp3an3an.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
mp3an3an ((𝜓𝜃) → 𝜂)

Proof of Theorem mp3an3an
StepHypRef Expression
1 mp3an3an.2 . 2 (𝜓𝜒)
2 mp3an3an.3 . 2 (𝜃𝜏)
3 mp3an3an.1 . . 3 𝜑
4 mp3an3an.4 . . 3 ((𝜑𝜒𝜏) → 𝜂)
53, 4mp3an1 1448 . 2 ((𝜒𝜏) → 𝜂)
61, 2, 5syl2an 595 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  mp3an2ani  1468  unfilem2  9372  rankelun  9941  mul02  11468  fnn0ind  12742  supminf  13000  nn0p1elfzo  13759  faclbnd5  14347  pfxccatin12lem3  14780  mulre  15170  divalglem0  16441  algcvga  16626  infpn2  16960  prmgaplem7  17104  blssioo  24836  i1fsub  25763  itg1sub  25764  coesub  26316  dgrsub  26332  sincosq1eq  26572  logtayl2  26722  cxploglim  27039  uspgr2v1e2w  29286  ftc1anclem6  37658  io1ii  48600
  Copyright terms: Public domain W3C validator