MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an3an Structured version   Visualization version   GIF version

Theorem mp3an3an 1469
Description: mp3an 1463 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.)
Hypotheses
Ref Expression
mp3an3an.1 𝜑
mp3an3an.2 (𝜓𝜒)
mp3an3an.3 (𝜃𝜏)
mp3an3an.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
mp3an3an ((𝜓𝜃) → 𝜂)

Proof of Theorem mp3an3an
StepHypRef Expression
1 mp3an3an.2 . 2 (𝜓𝜒)
2 mp3an3an.3 . 2 (𝜃𝜏)
3 mp3an3an.1 . . 3 𝜑
4 mp3an3an.4 . . 3 ((𝜑𝜒𝜏) → 𝜂)
53, 4mp3an1 1450 . 2 ((𝜒𝜏) → 𝜂)
61, 2, 5syl2an 596 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  mp3an2ani  1470  unfilem2  9316  rankelun  9886  mul02  11413  fnn0ind  12692  supminf  12951  nn0p1elfzo  13719  faclbnd5  14316  pfxccatin12lem3  14750  mulre  15140  divalglem0  16412  algcvga  16598  infpn2  16933  prmgaplem7  17077  blssioo  24734  i1fsub  25661  itg1sub  25662  coesub  26214  dgrsub  26230  sincosq1eq  26473  logtayl2  26623  cxploglim  26940  uspgr2v1e2w  29230  ftc1anclem6  37722  plusmod5ne  47374  io1ii  48895
  Copyright terms: Public domain W3C validator