| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an3an | Structured version Visualization version GIF version | ||
| Description: mp3an 1463 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an3an.1 | ⊢ 𝜑 |
| mp3an3an.2 | ⊢ (𝜓 → 𝜒) |
| mp3an3an.3 | ⊢ (𝜃 → 𝜏) |
| mp3an3an.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| mp3an3an | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3an.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 2 | mp3an3an.3 | . 2 ⊢ (𝜃 → 𝜏) | |
| 3 | mp3an3an.1 | . . 3 ⊢ 𝜑 | |
| 4 | mp3an3an.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 3, 4 | mp3an1 1450 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜂) |
| 6 | 1, 2, 5 | syl2an 596 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3an2ani 1470 unfilem2 9190 rankelun 9765 mul02 11291 fnn0ind 12572 supminf 12833 nn0p1elfzo 13602 faclbnd5 14205 pfxccatin12lem3 14639 mulre 15028 divalglem0 16304 algcvga 16490 infpn2 16825 prmgaplem7 16969 blssioo 24710 i1fsub 25636 itg1sub 25637 coesub 26189 dgrsub 26205 sincosq1eq 26448 logtayl2 26598 cxploglim 26915 uspgr2v1e2w 29229 ftc1anclem6 37737 plusmod5ne 47444 io1ii 49020 |
| Copyright terms: Public domain | W3C validator |