MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an3an Structured version   Visualization version   GIF version

Theorem mp3an3an 1465
Description: mp3an 1459 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.)
Hypotheses
Ref Expression
mp3an3an.1 𝜑
mp3an3an.2 (𝜓𝜒)
mp3an3an.3 (𝜃𝜏)
mp3an3an.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
mp3an3an ((𝜓𝜃) → 𝜂)

Proof of Theorem mp3an3an
StepHypRef Expression
1 mp3an3an.2 . 2 (𝜓𝜒)
2 mp3an3an.3 . 2 (𝜃𝜏)
3 mp3an3an.1 . . 3 𝜑
4 mp3an3an.4 . . 3 ((𝜑𝜒𝜏) → 𝜂)
53, 4mp3an1 1446 . 2 ((𝜒𝜏) → 𝜂)
61, 2, 5syl2an 594 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1087
This theorem is referenced by:  mp3an2ani  1466  unfilem2  9313  rankelun  9869  mul02  11396  fnn0ind  12665  supminf  12923  nn0p1elfzo  13679  faclbnd5  14262  pfxccatin12lem3  14686  mulre  15072  divalglem0  16340  algcvga  16520  infpn2  16850  prmgaplem7  16994  blssioo  24531  i1fsub  25458  itg1sub  25459  coesub  26006  dgrsub  26022  sincosq1eq  26258  logtayl2  26406  cxploglim  26718  uspgr2v1e2w  28775  ftc1anclem6  36869  io1ii  47640
  Copyright terms: Public domain W3C validator