MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an3an Structured version   Visualization version   GIF version

Theorem mp3an3an 1468
Description: mp3an 1462 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.)
Hypotheses
Ref Expression
mp3an3an.1 𝜑
mp3an3an.2 (𝜓𝜒)
mp3an3an.3 (𝜃𝜏)
mp3an3an.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
mp3an3an ((𝜓𝜃) → 𝜂)

Proof of Theorem mp3an3an
StepHypRef Expression
1 mp3an3an.2 . 2 (𝜓𝜒)
2 mp3an3an.3 . 2 (𝜃𝜏)
3 mp3an3an.1 . . 3 𝜑
4 mp3an3an.4 . . 3 ((𝜑𝜒𝜏) → 𝜂)
53, 4mp3an1 1449 . 2 ((𝜒𝜏) → 𝜂)
61, 2, 5syl2an 597 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090
This theorem is referenced by:  mp3an2ani  1469  unfilem2  9311  rankelun  9867  mul02  11392  fnn0ind  12661  supminf  12919  nn0p1elfzo  13675  faclbnd5  14258  pfxccatin12lem3  14682  mulre  15068  divalglem0  16336  algcvga  16516  infpn2  16846  prmgaplem7  16990  blssioo  24311  i1fsub  25226  itg1sub  25227  coesub  25771  dgrsub  25786  sincosq1eq  26022  logtayl2  26170  cxploglim  26482  uspgr2v1e2w  28508  ftc1anclem6  36566  io1ii  47553
  Copyright terms: Public domain W3C validator