![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an3an | Structured version Visualization version GIF version |
Description: mp3an 1461 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an3an.1 | ⊢ 𝜑 |
mp3an3an.2 | ⊢ (𝜓 → 𝜒) |
mp3an3an.3 | ⊢ (𝜃 → 𝜏) |
mp3an3an.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
mp3an3an | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3an.2 | . 2 ⊢ (𝜓 → 𝜒) | |
2 | mp3an3an.3 | . 2 ⊢ (𝜃 → 𝜏) | |
3 | mp3an3an.1 | . . 3 ⊢ 𝜑 | |
4 | mp3an3an.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 3, 4 | mp3an1 1448 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜂) |
6 | 1, 2, 5 | syl2an 595 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: mp3an2ani 1468 unfilem2 9372 rankelun 9941 mul02 11468 fnn0ind 12742 supminf 13000 nn0p1elfzo 13759 faclbnd5 14347 pfxccatin12lem3 14780 mulre 15170 divalglem0 16441 algcvga 16626 infpn2 16960 prmgaplem7 17104 blssioo 24836 i1fsub 25763 itg1sub 25764 coesub 26316 dgrsub 26332 sincosq1eq 26572 logtayl2 26722 cxploglim 27039 uspgr2v1e2w 29286 ftc1anclem6 37658 io1ii 48600 |
Copyright terms: Public domain | W3C validator |