MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an3an Structured version   Visualization version   GIF version

Theorem mp3an3an 1469
Description: mp3an 1463 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.)
Hypotheses
Ref Expression
mp3an3an.1 𝜑
mp3an3an.2 (𝜓𝜒)
mp3an3an.3 (𝜃𝜏)
mp3an3an.4 ((𝜑𝜒𝜏) → 𝜂)
Assertion
Ref Expression
mp3an3an ((𝜓𝜃) → 𝜂)

Proof of Theorem mp3an3an
StepHypRef Expression
1 mp3an3an.2 . 2 (𝜓𝜒)
2 mp3an3an.3 . 2 (𝜃𝜏)
3 mp3an3an.1 . . 3 𝜑
4 mp3an3an.4 . . 3 ((𝜑𝜒𝜏) → 𝜂)
53, 4mp3an1 1450 . 2 ((𝜒𝜏) → 𝜂)
61, 2, 5syl2an 596 1 ((𝜓𝜃) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  mp3an2ani  1470  unfilem2  9231  rankelun  9801  mul02  11328  fnn0ind  12609  supminf  12870  nn0p1elfzo  13639  faclbnd5  14239  pfxccatin12lem3  14673  mulre  15063  divalglem0  16339  algcvga  16525  infpn2  16860  prmgaplem7  17004  blssioo  24716  i1fsub  25642  itg1sub  25643  coesub  26195  dgrsub  26211  sincosq1eq  26454  logtayl2  26604  cxploglim  26921  uspgr2v1e2w  29231  ftc1anclem6  37685  plusmod5ne  47339  io1ii  48902
  Copyright terms: Public domain W3C validator