| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an3an | Structured version Visualization version GIF version | ||
| Description: mp3an 1463 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an3an.1 | ⊢ 𝜑 |
| mp3an3an.2 | ⊢ (𝜓 → 𝜒) |
| mp3an3an.3 | ⊢ (𝜃 → 𝜏) |
| mp3an3an.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| mp3an3an | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3an.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 2 | mp3an3an.3 | . 2 ⊢ (𝜃 → 𝜏) | |
| 3 | mp3an3an.1 | . . 3 ⊢ 𝜑 | |
| 4 | mp3an3an.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
| 5 | 3, 4 | mp3an1 1450 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜂) |
| 6 | 1, 2, 5 | syl2an 596 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mp3an2ani 1470 unfilem2 9231 rankelun 9801 mul02 11328 fnn0ind 12609 supminf 12870 nn0p1elfzo 13639 faclbnd5 14239 pfxccatin12lem3 14673 mulre 15063 divalglem0 16339 algcvga 16525 infpn2 16860 prmgaplem7 17004 blssioo 24716 i1fsub 25642 itg1sub 25643 coesub 26195 dgrsub 26211 sincosq1eq 26454 logtayl2 26604 cxploglim 26921 uspgr2v1e2w 29231 ftc1anclem6 37685 plusmod5ne 47339 io1ii 48902 |
| Copyright terms: Public domain | W3C validator |