Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3an3an | Structured version Visualization version GIF version |
Description: mp3an 1460 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an3an.1 | ⊢ 𝜑 |
mp3an3an.2 | ⊢ (𝜓 → 𝜒) |
mp3an3an.3 | ⊢ (𝜃 → 𝜏) |
mp3an3an.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
mp3an3an | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3an.2 | . 2 ⊢ (𝜓 → 𝜒) | |
2 | mp3an3an.3 | . 2 ⊢ (𝜃 → 𝜏) | |
3 | mp3an3an.1 | . . 3 ⊢ 𝜑 | |
4 | mp3an3an.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 3, 4 | mp3an1 1447 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜂) |
6 | 1, 2, 5 | syl2an 596 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: mp3an2ani 1467 unfilem2 9168 rankelun 9721 mul02 11246 fnn0ind 12512 supminf 12768 nn0p1elfzo 13523 faclbnd5 14105 pfxccatin12lem3 14535 mulre 14923 divalglem0 16193 algcvga 16373 infpn2 16703 prmgaplem7 16847 blssioo 24056 i1fsub 24971 itg1sub 24972 coesub 25516 dgrsub 25531 sincosq1eq 25767 logtayl2 25915 cxploglim 26225 uspgr2v1e2w 27848 ftc1anclem6 35953 io1ii 46554 |
Copyright terms: Public domain | W3C validator |