![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an3an | Structured version Visualization version GIF version |
Description: mp3an 1462 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an3an.1 | ⊢ 𝜑 |
mp3an3an.2 | ⊢ (𝜓 → 𝜒) |
mp3an3an.3 | ⊢ (𝜃 → 𝜏) |
mp3an3an.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
mp3an3an | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3an.2 | . 2 ⊢ (𝜓 → 𝜒) | |
2 | mp3an3an.3 | . 2 ⊢ (𝜃 → 𝜏) | |
3 | mp3an3an.1 | . . 3 ⊢ 𝜑 | |
4 | mp3an3an.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 3, 4 | mp3an1 1449 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜂) |
6 | 1, 2, 5 | syl2an 597 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: mp3an2ani 1469 unfilem2 9311 rankelun 9867 mul02 11392 fnn0ind 12661 supminf 12919 nn0p1elfzo 13675 faclbnd5 14258 pfxccatin12lem3 14682 mulre 15068 divalglem0 16336 algcvga 16516 infpn2 16846 prmgaplem7 16990 blssioo 24311 i1fsub 25226 itg1sub 25227 coesub 25771 dgrsub 25786 sincosq1eq 26022 logtayl2 26170 cxploglim 26482 uspgr2v1e2w 28508 ftc1anclem6 36566 io1ii 47553 |
Copyright terms: Public domain | W3C validator |