![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an3an | Structured version Visualization version GIF version |
Description: mp3an 1460 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
Ref | Expression |
---|---|
mp3an3an.1 | ⊢ 𝜑 |
mp3an3an.2 | ⊢ (𝜓 → 𝜒) |
mp3an3an.3 | ⊢ (𝜃 → 𝜏) |
mp3an3an.4 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
mp3an3an | ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an3an.2 | . 2 ⊢ (𝜓 → 𝜒) | |
2 | mp3an3an.3 | . 2 ⊢ (𝜃 → 𝜏) | |
3 | mp3an3an.1 | . . 3 ⊢ 𝜑 | |
4 | mp3an3an.4 | . . 3 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | |
5 | 3, 4 | mp3an1 1447 | . 2 ⊢ ((𝜒 ∧ 𝜏) → 𝜂) |
6 | 1, 2, 5 | syl2an 596 | 1 ⊢ ((𝜓 ∧ 𝜃) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: mp3an2ani 1467 unfilem2 9342 rankelun 9910 mul02 11437 fnn0ind 12715 supminf 12975 nn0p1elfzo 13739 faclbnd5 14334 pfxccatin12lem3 14767 mulre 15157 divalglem0 16427 algcvga 16613 infpn2 16947 prmgaplem7 17091 blssioo 24831 i1fsub 25758 itg1sub 25759 coesub 26311 dgrsub 26327 sincosq1eq 26569 logtayl2 26719 cxploglim 27036 uspgr2v1e2w 29283 ftc1anclem6 37685 plusmod5ne 47285 io1ii 48717 |
Copyright terms: Public domain | W3C validator |