Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalpclem2 Structured version   Visualization version   GIF version

Theorem itcovalpclem2 48664
Description: Lemma 2 for itcovalpc 48665: induction step. (Contributed by AV, 4-May-2024.)
Hypothesis
Ref Expression
itcovalpc.f 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
Assertion
Ref Expression
itcovalpclem2 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))))
Distinct variable groups:   𝐶,𝑛   𝑦,𝑛
Allowed substitution hints:   𝐶(𝑦)   𝐹(𝑦,𝑛)

Proof of Theorem itcovalpclem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 itcovalpc.f . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
2 nn0ex 12455 . . . . . 6 0 ∈ V
32mptex 7200 . . . . 5 (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) ∈ V
41, 3eqeltri 2825 . . . 4 𝐹 ∈ V
5 simpl 482 . . . 4 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝑦 ∈ ℕ0)
6 simpr 484 . . . 4 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))))
7 itcovalsucov 48661 . . . 4 ((𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))))
84, 5, 6, 7mp3an2ani 1470 . . 3 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))))
9 simpr 484 . . . . . . 7 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
10 simplr 768 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ ℕ0)
115adantr 480 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑦 ∈ ℕ0)
1210, 11nn0mulcld 12515 . . . . . . 7 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐶 · 𝑦) ∈ ℕ0)
139, 12nn0addcld 12514 . . . . . 6 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 + (𝐶 · 𝑦)) ∈ ℕ0)
14 eqidd 2731 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))))
15 oveq1 7397 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 + 𝐶) = (𝑚 + 𝐶))
1615cbvmptv 5214 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) = (𝑚 ∈ ℕ0 ↦ (𝑚 + 𝐶))
171, 16eqtri 2753 . . . . . . 7 𝐹 = (𝑚 ∈ ℕ0 ↦ (𝑚 + 𝐶))
1817a1i 11 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐹 = (𝑚 ∈ ℕ0 ↦ (𝑚 + 𝐶)))
19 oveq1 7397 . . . . . 6 (𝑚 = (𝑛 + (𝐶 · 𝑦)) → (𝑚 + 𝐶) = ((𝑛 + (𝐶 · 𝑦)) + 𝐶))
2013, 14, 18, 19fmptco 7104 . . . . 5 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 + (𝐶 · 𝑦)) + 𝐶)))
219nn0cnd 12512 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
2212nn0cnd 12512 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐶 · 𝑦) ∈ ℂ)
2310nn0cnd 12512 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ ℂ)
2421, 22, 23addassd 11203 . . . . . . 7 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛 + (𝐶 · 𝑦)) + 𝐶) = (𝑛 + ((𝐶 · 𝑦) + 𝐶)))
25 nn0cn 12459 . . . . . . . . . . . . . 14 (𝐶 ∈ ℕ0𝐶 ∈ ℂ)
2625mulridd 11198 . . . . . . . . . . . . 13 (𝐶 ∈ ℕ0 → (𝐶 · 1) = 𝐶)
2726adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐶 · 1) = 𝐶)
2827eqcomd 2736 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 = (𝐶 · 1))
2928oveq2d 7406 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 · 𝑦) + 𝐶) = ((𝐶 · 𝑦) + (𝐶 · 1)))
30 simpr 484 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
3130nn0cnd 12512 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
325nn0cnd 12512 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝑦 ∈ ℂ)
33 1cnd 11176 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 1 ∈ ℂ)
3431, 32, 33adddid 11205 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐶 · (𝑦 + 1)) = ((𝐶 · 𝑦) + (𝐶 · 1)))
3529, 34eqtr4d 2768 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 · 𝑦) + 𝐶) = (𝐶 · (𝑦 + 1)))
3635oveq2d 7406 . . . . . . . 8 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑛 + ((𝐶 · 𝑦) + 𝐶)) = (𝑛 + (𝐶 · (𝑦 + 1))))
3736adantr 480 . . . . . . 7 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 + ((𝐶 · 𝑦) + 𝐶)) = (𝑛 + (𝐶 · (𝑦 + 1))))
3824, 37eqtrd 2765 . . . . . 6 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛 + (𝐶 · 𝑦)) + 𝐶) = (𝑛 + (𝐶 · (𝑦 + 1))))
3938mpteq2dva 5203 . . . . 5 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ ((𝑛 + (𝐶 · 𝑦)) + 𝐶)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
4020, 39eqtrd 2765 . . . 4 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
4140adantr 480 . . 3 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
428, 41eqtrd 2765 . 2 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
4342ex 412 1 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cmpt 5191  ccom 5645  cfv 6514  (class class class)co 7390  1c1 11076   + caddc 11078   · cmul 11080  0cn0 12449  IterCompcitco 48650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-itco 48652
This theorem is referenced by:  itcovalpc  48665
  Copyright terms: Public domain W3C validator