Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalpclem2 Structured version   Visualization version   GIF version

Theorem itcovalpclem2 45435
Description: Lemma 2 for itcovalpc 45436: induction step. (Contributed by AV, 4-May-2024.)
Hypothesis
Ref Expression
itcovalpc.f 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
Assertion
Ref Expression
itcovalpclem2 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))))
Distinct variable groups:   𝐶,𝑛   𝑦,𝑛
Allowed substitution hints:   𝐶(𝑦)   𝐹(𝑦,𝑛)

Proof of Theorem itcovalpclem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 itcovalpc.f . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
2 nn0ex 11925 . . . . . 6 0 ∈ V
32mptex 6970 . . . . 5 (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) ∈ V
41, 3eqeltri 2847 . . . 4 𝐹 ∈ V
5 simpl 487 . . . 4 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝑦 ∈ ℕ0)
6 simpr 489 . . . 4 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))))
7 itcovalsucov 45432 . . . 4 ((𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))))
84, 5, 6, 7mp3an2ani 1466 . . 3 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))))
9 simpr 489 . . . . . . 7 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
10 simplr 769 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ ℕ0)
115adantr 485 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑦 ∈ ℕ0)
1210, 11nn0mulcld 11984 . . . . . . 7 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐶 · 𝑦) ∈ ℕ0)
139, 12nn0addcld 11983 . . . . . 6 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 + (𝐶 · 𝑦)) ∈ ℕ0)
14 eqidd 2760 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))))
15 oveq1 7150 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 + 𝐶) = (𝑚 + 𝐶))
1615cbvmptv 5128 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) = (𝑚 ∈ ℕ0 ↦ (𝑚 + 𝐶))
171, 16eqtri 2782 . . . . . . 7 𝐹 = (𝑚 ∈ ℕ0 ↦ (𝑚 + 𝐶))
1817a1i 11 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐹 = (𝑚 ∈ ℕ0 ↦ (𝑚 + 𝐶)))
19 oveq1 7150 . . . . . 6 (𝑚 = (𝑛 + (𝐶 · 𝑦)) → (𝑚 + 𝐶) = ((𝑛 + (𝐶 · 𝑦)) + 𝐶))
2013, 14, 18, 19fmptco 6875 . . . . 5 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 + (𝐶 · 𝑦)) + 𝐶)))
219nn0cnd 11981 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
2212nn0cnd 11981 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐶 · 𝑦) ∈ ℂ)
2310nn0cnd 11981 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ ℂ)
2421, 22, 23addassd 10686 . . . . . . 7 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛 + (𝐶 · 𝑦)) + 𝐶) = (𝑛 + ((𝐶 · 𝑦) + 𝐶)))
25 nn0cn 11929 . . . . . . . . . . . . . 14 (𝐶 ∈ ℕ0𝐶 ∈ ℂ)
2625mulid1d 10681 . . . . . . . . . . . . 13 (𝐶 ∈ ℕ0 → (𝐶 · 1) = 𝐶)
2726adantl 486 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐶 · 1) = 𝐶)
2827eqcomd 2765 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 = (𝐶 · 1))
2928oveq2d 7159 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 · 𝑦) + 𝐶) = ((𝐶 · 𝑦) + (𝐶 · 1)))
30 simpr 489 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
3130nn0cnd 11981 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
325nn0cnd 11981 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝑦 ∈ ℂ)
33 1cnd 10659 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 1 ∈ ℂ)
3431, 32, 33adddid 10688 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐶 · (𝑦 + 1)) = ((𝐶 · 𝑦) + (𝐶 · 1)))
3529, 34eqtr4d 2797 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 · 𝑦) + 𝐶) = (𝐶 · (𝑦 + 1)))
3635oveq2d 7159 . . . . . . . 8 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑛 + ((𝐶 · 𝑦) + 𝐶)) = (𝑛 + (𝐶 · (𝑦 + 1))))
3736adantr 485 . . . . . . 7 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 + ((𝐶 · 𝑦) + 𝐶)) = (𝑛 + (𝐶 · (𝑦 + 1))))
3824, 37eqtrd 2794 . . . . . 6 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛 + (𝐶 · 𝑦)) + 𝐶) = (𝑛 + (𝐶 · (𝑦 + 1))))
3938mpteq2dva 5120 . . . . 5 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ ((𝑛 + (𝐶 · 𝑦)) + 𝐶)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
4020, 39eqtrd 2794 . . . 4 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
4140adantr 485 . . 3 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
428, 41eqtrd 2794 . 2 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
4342ex 417 1 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  Vcvv 3407  cmpt 5105  ccom 5521  cfv 6328  (class class class)co 7143  1c1 10561   + caddc 10563   · cmul 10565  0cn0 11919  IterCompcitco 45421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-seq 13404  df-itco 45423
This theorem is referenced by:  itcovalpc  45436
  Copyright terms: Public domain W3C validator