| Step | Hyp | Ref
| Expression |
| 1 | | itcovalpc.f |
. . . . 5
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) |
| 2 | | nn0ex 12532 |
. . . . . 6
⊢
ℕ0 ∈ V |
| 3 | 2 | mptex 7243 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
↦ (𝑛 + 𝐶)) ∈ V |
| 4 | 1, 3 | eqeltri 2837 |
. . . 4
⊢ 𝐹 ∈ V |
| 5 | | simpl 482 |
. . . 4
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → 𝑦 ∈ ℕ0) |
| 6 | | simpr 484 |
. . . 4
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) |
| 7 | | itcovalsucov 48589 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝑦 ∈ ℕ0
∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))))) |
| 8 | 4, 5, 6, 7 | mp3an2ani 1470 |
. . 3
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))))) |
| 9 | | simpr 484 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 10 | | simplr 769 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈
ℕ0) |
| 11 | 5 | adantr 480 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑦 ∈
ℕ0) |
| 12 | 10, 11 | nn0mulcld 12592 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐶 · 𝑦) ∈
ℕ0) |
| 13 | 9, 12 | nn0addcld 12591 |
. . . . . 6
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 + (𝐶 · 𝑦)) ∈
ℕ0) |
| 14 | | eqidd 2738 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) |
| 15 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑛 + 𝐶) = (𝑚 + 𝐶)) |
| 16 | 15 | cbvmptv 5255 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ (𝑛 + 𝐶)) = (𝑚 ∈ ℕ0 ↦ (𝑚 + 𝐶)) |
| 17 | 1, 16 | eqtri 2765 |
. . . . . . 7
⊢ 𝐹 = (𝑚 ∈ ℕ0 ↦ (𝑚 + 𝐶)) |
| 18 | 17 | a1i 11 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → 𝐹 = (𝑚 ∈ ℕ0 ↦ (𝑚 + 𝐶))) |
| 19 | | oveq1 7438 |
. . . . . 6
⊢ (𝑚 = (𝑛 + (𝐶 · 𝑦)) → (𝑚 + 𝐶) = ((𝑛 + (𝐶 · 𝑦)) + 𝐶)) |
| 20 | 13, 14, 18, 19 | fmptco 7149 |
. . . . 5
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 + (𝐶 · 𝑦)) + 𝐶))) |
| 21 | 9 | nn0cnd 12589 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℂ) |
| 22 | 12 | nn0cnd 12589 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐶 · 𝑦) ∈ ℂ) |
| 23 | 10 | nn0cnd 12589 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈
ℂ) |
| 24 | 21, 22, 23 | addassd 11283 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛 + (𝐶 · 𝑦)) + 𝐶) = (𝑛 + ((𝐶 · 𝑦) + 𝐶))) |
| 25 | | nn0cn 12536 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ ℕ0
→ 𝐶 ∈
ℂ) |
| 26 | 25 | mulridd 11278 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ ℕ0
→ (𝐶 · 1) =
𝐶) |
| 27 | 26 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → (𝐶 · 1) = 𝐶) |
| 28 | 27 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → 𝐶 = (𝐶 · 1)) |
| 29 | 28 | oveq2d 7447 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → ((𝐶 · 𝑦) + 𝐶) = ((𝐶 · 𝑦) + (𝐶 · 1))) |
| 30 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → 𝐶 ∈
ℕ0) |
| 31 | 30 | nn0cnd 12589 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → 𝐶 ∈ ℂ) |
| 32 | 5 | nn0cnd 12589 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → 𝑦 ∈ ℂ) |
| 33 | | 1cnd 11256 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → 1 ∈ ℂ) |
| 34 | 31, 32, 33 | adddid 11285 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → (𝐶 · (𝑦 + 1)) = ((𝐶 · 𝑦) + (𝐶 · 1))) |
| 35 | 29, 34 | eqtr4d 2780 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → ((𝐶 · 𝑦) + 𝐶) = (𝐶 · (𝑦 + 1))) |
| 36 | 35 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → (𝑛 + ((𝐶 · 𝑦) + 𝐶)) = (𝑛 + (𝐶 · (𝑦 + 1)))) |
| 37 | 36 | adantr 480 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 + ((𝐶 · 𝑦) + 𝐶)) = (𝑛 + (𝐶 · (𝑦 + 1)))) |
| 38 | 24, 37 | eqtrd 2777 |
. . . . . 6
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛 + (𝐶 · 𝑦)) + 𝐶) = (𝑛 + (𝐶 · (𝑦 + 1)))) |
| 39 | 38 | mpteq2dva 5242 |
. . . . 5
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → (𝑛 ∈ ℕ0 ↦ ((𝑛 + (𝐶 · 𝑦)) + 𝐶)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))) |
| 40 | 20, 39 | eqtrd 2777 |
. . . 4
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))) |
| 41 | 40 | adantr 480 |
. . 3
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))) |
| 42 | 8, 41 | eqtrd 2777 |
. 2
⊢ (((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))) |
| 43 | 42 | ex 412 |
1
⊢ ((𝑦 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))) |