Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalpclem2 Structured version   Visualization version   GIF version

Theorem itcovalpclem2 48703
Description: Lemma 2 for itcovalpc 48704: induction step. (Contributed by AV, 4-May-2024.)
Hypothesis
Ref Expression
itcovalpc.f 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
Assertion
Ref Expression
itcovalpclem2 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))))
Distinct variable groups:   𝐶,𝑛   𝑦,𝑛
Allowed substitution hints:   𝐶(𝑦)   𝐹(𝑦,𝑛)

Proof of Theorem itcovalpclem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 itcovalpc.f . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
2 nn0ex 12382 . . . . . 6 0 ∈ V
32mptex 7152 . . . . 5 (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) ∈ V
41, 3eqeltri 2827 . . . 4 𝐹 ∈ V
5 simpl 482 . . . 4 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝑦 ∈ ℕ0)
6 simpr 484 . . . 4 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))))
7 itcovalsucov 48700 . . . 4 ((𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))))
84, 5, 6, 7mp3an2ani 1470 . . 3 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))))
9 simpr 484 . . . . . . 7 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
10 simplr 768 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ ℕ0)
115adantr 480 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑦 ∈ ℕ0)
1210, 11nn0mulcld 12442 . . . . . . 7 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐶 · 𝑦) ∈ ℕ0)
139, 12nn0addcld 12441 . . . . . 6 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 + (𝐶 · 𝑦)) ∈ ℕ0)
14 eqidd 2732 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))))
15 oveq1 7348 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛 + 𝐶) = (𝑚 + 𝐶))
1615cbvmptv 5190 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) = (𝑚 ∈ ℕ0 ↦ (𝑚 + 𝐶))
171, 16eqtri 2754 . . . . . . 7 𝐹 = (𝑚 ∈ ℕ0 ↦ (𝑚 + 𝐶))
1817a1i 11 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐹 = (𝑚 ∈ ℕ0 ↦ (𝑚 + 𝐶)))
19 oveq1 7348 . . . . . 6 (𝑚 = (𝑛 + (𝐶 · 𝑦)) → (𝑚 + 𝐶) = ((𝑛 + (𝐶 · 𝑦)) + 𝐶))
2013, 14, 18, 19fmptco 7057 . . . . 5 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 + (𝐶 · 𝑦)) + 𝐶)))
219nn0cnd 12439 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
2212nn0cnd 12439 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐶 · 𝑦) ∈ ℂ)
2310nn0cnd 12439 . . . . . . . 8 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ ℂ)
2421, 22, 23addassd 11129 . . . . . . 7 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛 + (𝐶 · 𝑦)) + 𝐶) = (𝑛 + ((𝐶 · 𝑦) + 𝐶)))
25 nn0cn 12386 . . . . . . . . . . . . . 14 (𝐶 ∈ ℕ0𝐶 ∈ ℂ)
2625mulridd 11124 . . . . . . . . . . . . 13 (𝐶 ∈ ℕ0 → (𝐶 · 1) = 𝐶)
2726adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐶 · 1) = 𝐶)
2827eqcomd 2737 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 = (𝐶 · 1))
2928oveq2d 7357 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 · 𝑦) + 𝐶) = ((𝐶 · 𝑦) + (𝐶 · 1)))
30 simpr 484 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
3130nn0cnd 12439 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
325nn0cnd 12439 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝑦 ∈ ℂ)
33 1cnd 11102 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 1 ∈ ℂ)
3431, 32, 33adddid 11131 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐶 · (𝑦 + 1)) = ((𝐶 · 𝑦) + (𝐶 · 1)))
3529, 34eqtr4d 2769 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 · 𝑦) + 𝐶) = (𝐶 · (𝑦 + 1)))
3635oveq2d 7357 . . . . . . . 8 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑛 + ((𝐶 · 𝑦) + 𝐶)) = (𝑛 + (𝐶 · (𝑦 + 1))))
3736adantr 480 . . . . . . 7 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 + ((𝐶 · 𝑦) + 𝐶)) = (𝑛 + (𝐶 · (𝑦 + 1))))
3824, 37eqtrd 2766 . . . . . 6 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛 + (𝐶 · 𝑦)) + 𝐶) = (𝑛 + (𝐶 · (𝑦 + 1))))
3938mpteq2dva 5179 . . . . 5 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ ((𝑛 + (𝐶 · 𝑦)) + 𝐶)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
4020, 39eqtrd 2766 . . . 4 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
4140adantr 480 . . 3 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
428, 41eqtrd 2766 . 2 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
4342ex 412 1 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5167  ccom 5615  cfv 6476  (class class class)co 7341  1c1 11002   + caddc 11004   · cmul 11006  0cn0 12376  IterCompcitco 48689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-seq 13904  df-itco 48691
This theorem is referenced by:  itcovalpc  48704
  Copyright terms: Public domain W3C validator