![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 01sqrexlem4 | Structured version Visualization version GIF version |
Description: Lemma for 01sqrex 15294. (Contributed by Mario Carneiro, 10-Jul-2013.) |
Ref | Expression |
---|---|
01sqrexlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
01sqrexlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
Ref | Expression |
---|---|
01sqrexlem4 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 01sqrexlem1.2 | . . . 4 ⊢ 𝐵 = sup(𝑆, ℝ, < ) | |
2 | 01sqrexlem1.1 | . . . . . 6 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
3 | 2, 1 | 01sqrexlem3 15289 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦)) |
4 | suprcl 12235 | . . . . 5 ⊢ ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦) → sup(𝑆, ℝ, < ) ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → sup(𝑆, ℝ, < ) ∈ ℝ) |
6 | 1, 5 | eqeltrid 2845 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ∈ ℝ) |
7 | rpgt0 13054 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 0 < 𝐴) |
9 | 2, 1 | 01sqrexlem2 15288 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ 𝑆) |
10 | suprub 12236 | . . . . . 6 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦) ∧ 𝐴 ∈ 𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < )) | |
11 | 3, 9, 10 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ≤ sup(𝑆, ℝ, < )) |
12 | 11, 1 | breqtrrdi 5193 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ≤ 𝐵) |
13 | 0re 11270 | . . . . 5 ⊢ 0 ∈ ℝ | |
14 | rpre 13050 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
15 | ltletr 11360 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 𝐴 ≤ 𝐵) → 0 < 𝐵)) | |
16 | 13, 14, 6, 15 | mp3an2ani 1469 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((0 < 𝐴 ∧ 𝐴 ≤ 𝐵) → 0 < 𝐵)) |
17 | 8, 12, 16 | mp2and 699 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 0 < 𝐵) |
18 | 6, 17 | elrpd 13081 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ∈ ℝ+) |
19 | 2, 1 | 01sqrexlem1 15287 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑧 ∈ 𝑆 𝑧 ≤ 1) |
20 | 1re 11268 | . . . . 5 ⊢ 1 ∈ ℝ | |
21 | suprleub 12241 | . . . . 5 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦) ∧ 1 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 1 ↔ ∀𝑧 ∈ 𝑆 𝑧 ≤ 1)) | |
22 | 3, 20, 21 | sylancl 586 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (sup(𝑆, ℝ, < ) ≤ 1 ↔ ∀𝑧 ∈ 𝑆 𝑧 ≤ 1)) |
23 | 19, 22 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → sup(𝑆, ℝ, < ) ≤ 1) |
24 | 1, 23 | eqbrtrid 5186 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ≤ 1) |
25 | 18, 24 | jca 511 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 {crab 3436 ⊆ wss 3966 ∅c0 4342 class class class wbr 5151 (class class class)co 7438 supcsup 9487 ℝcr 11161 0cc0 11162 1c1 11163 < clt 11302 ≤ cle 11303 2c2 12328 ℝ+crp 13041 ↑cexp 14108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-sup 9489 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-seq 14049 df-exp 14109 |
This theorem is referenced by: 01sqrexlem5 15291 01sqrexlem7 15293 01sqrex 15294 |
Copyright terms: Public domain | W3C validator |