MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  01sqrexlem4 Structured version   Visualization version   GIF version

Theorem 01sqrexlem4 15210
Description: Lemma for 01sqrex 15214. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
01sqrexlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
01sqrexlem1.2 𝐵 = sup(𝑆, ℝ, < )
Assertion
Ref Expression
01sqrexlem4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem 01sqrexlem4
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 01sqrexlem1.2 . . . 4 𝐵 = sup(𝑆, ℝ, < )
2 01sqrexlem1.1 . . . . . 6 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
32, 101sqrexlem3 15209 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦))
4 suprcl 12190 . . . . 5 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) → sup(𝑆, ℝ, < ) ∈ ℝ)
53, 4syl 17 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → sup(𝑆, ℝ, < ) ∈ ℝ)
61, 5eqeltrid 2832 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ)
7 rpgt0 13004 . . . . 5 (𝐴 ∈ ℝ+ → 0 < 𝐴)
87adantr 480 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 0 < 𝐴)
92, 101sqrexlem2 15208 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴𝑆)
10 suprub 12191 . . . . . 6 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ 𝐴𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < ))
113, 9, 10syl2anc 583 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ≤ sup(𝑆, ℝ, < ))
1211, 1breqtrrdi 5184 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴𝐵)
13 0re 11232 . . . . 5 0 ∈ ℝ
14 rpre 13000 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
15 ltletr 11322 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴𝐴𝐵) → 0 < 𝐵))
1613, 14, 6, 15mp3an2ani 1465 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((0 < 𝐴𝐴𝐵) → 0 < 𝐵))
178, 12, 16mp2and 698 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 0 < 𝐵)
186, 17elrpd 13031 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ+)
192, 101sqrexlem1 15207 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∀𝑧𝑆 𝑧 ≤ 1)
20 1re 11230 . . . . 5 1 ∈ ℝ
21 suprleub 12196 . . . . 5 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ 1 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 1 ↔ ∀𝑧𝑆 𝑧 ≤ 1))
223, 20, 21sylancl 585 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (sup(𝑆, ℝ, < ) ≤ 1 ↔ ∀𝑧𝑆 𝑧 ≤ 1))
2319, 22mpbird 257 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → sup(𝑆, ℝ, < ) ≤ 1)
241, 23eqbrtrid 5177 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ≤ 1)
2518, 24jca 511 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  wral 3056  wrex 3065  {crab 3427  wss 3944  c0 4318   class class class wbr 5142  (class class class)co 7414  supcsup 9449  cr 11123  0cc0 11124  1c1 11125   < clt 11264  cle 11265  2c2 12283  +crp 12992  cexp 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-sup 9451  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-n0 12489  df-z 12575  df-uz 12839  df-rp 12993  df-seq 13985  df-exp 14045
This theorem is referenced by:  01sqrexlem5  15211  01sqrexlem7  15213  01sqrex  15214
  Copyright terms: Public domain W3C validator