![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 01sqrexlem4 | Structured version Visualization version GIF version |
Description: Lemma for 01sqrex 15214. (Contributed by Mario Carneiro, 10-Jul-2013.) |
Ref | Expression |
---|---|
01sqrexlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
01sqrexlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
Ref | Expression |
---|---|
01sqrexlem4 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 01sqrexlem1.2 | . . . 4 ⊢ 𝐵 = sup(𝑆, ℝ, < ) | |
2 | 01sqrexlem1.1 | . . . . . 6 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
3 | 2, 1 | 01sqrexlem3 15209 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦)) |
4 | suprcl 12190 | . . . . 5 ⊢ ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦) → sup(𝑆, ℝ, < ) ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → sup(𝑆, ℝ, < ) ∈ ℝ) |
6 | 1, 5 | eqeltrid 2832 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ∈ ℝ) |
7 | rpgt0 13004 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 0 < 𝐴) |
9 | 2, 1 | 01sqrexlem2 15208 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ 𝑆) |
10 | suprub 12191 | . . . . . 6 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦) ∧ 𝐴 ∈ 𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < )) | |
11 | 3, 9, 10 | syl2anc 583 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ≤ sup(𝑆, ℝ, < )) |
12 | 11, 1 | breqtrrdi 5184 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ≤ 𝐵) |
13 | 0re 11232 | . . . . 5 ⊢ 0 ∈ ℝ | |
14 | rpre 13000 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
15 | ltletr 11322 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 𝐴 ≤ 𝐵) → 0 < 𝐵)) | |
16 | 13, 14, 6, 15 | mp3an2ani 1465 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((0 < 𝐴 ∧ 𝐴 ≤ 𝐵) → 0 < 𝐵)) |
17 | 8, 12, 16 | mp2and 698 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 0 < 𝐵) |
18 | 6, 17 | elrpd 13031 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ∈ ℝ+) |
19 | 2, 1 | 01sqrexlem1 15207 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑧 ∈ 𝑆 𝑧 ≤ 1) |
20 | 1re 11230 | . . . . 5 ⊢ 1 ∈ ℝ | |
21 | suprleub 12196 | . . . . 5 ⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑦) ∧ 1 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 1 ↔ ∀𝑧 ∈ 𝑆 𝑧 ≤ 1)) | |
22 | 3, 20, 21 | sylancl 585 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (sup(𝑆, ℝ, < ) ≤ 1 ↔ ∀𝑧 ∈ 𝑆 𝑧 ≤ 1)) |
23 | 19, 22 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → sup(𝑆, ℝ, < ) ≤ 1) |
24 | 1, 23 | eqbrtrid 5177 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ≤ 1) |
25 | 18, 24 | jca 511 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∀wral 3056 ∃wrex 3065 {crab 3427 ⊆ wss 3944 ∅c0 4318 class class class wbr 5142 (class class class)co 7414 supcsup 9449 ℝcr 11123 0cc0 11124 1c1 11125 < clt 11264 ≤ cle 11265 2c2 12283 ℝ+crp 12992 ↑cexp 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9451 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-n0 12489 df-z 12575 df-uz 12839 df-rp 12993 df-seq 13985 df-exp 14045 |
This theorem is referenced by: 01sqrexlem5 15211 01sqrexlem7 15213 01sqrex 15214 |
Copyright terms: Public domain | W3C validator |