MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgrest Structured version   Visualization version   GIF version

Theorem tgrest 22533
Description: A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
tgrest ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (topGenβ€˜(𝐡 β†Ύt 𝐴)) = ((topGenβ€˜π΅) β†Ύt 𝐴))

Proof of Theorem tgrest
Dummy variables 𝑀 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7394 . . . . 5 (𝐡 β†Ύt 𝐴) ∈ V
2 eltg3 22335 . . . . 5 ((𝐡 β†Ύt 𝐴) ∈ V β†’ (π‘₯ ∈ (topGenβ€˜(𝐡 β†Ύt 𝐴)) ↔ βˆƒπ‘¦(𝑦 βŠ† (𝐡 β†Ύt 𝐴) ∧ π‘₯ = βˆͺ 𝑦)))
31, 2ax-mp 5 . . . 4 (π‘₯ ∈ (topGenβ€˜(𝐡 β†Ύt 𝐴)) ↔ βˆƒπ‘¦(𝑦 βŠ† (𝐡 β†Ύt 𝐴) ∧ π‘₯ = βˆͺ 𝑦))
4 simpll 766 . . . . . . . . 9 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑦 βŠ† (𝐡 β†Ύt 𝐴)) β†’ 𝐡 ∈ 𝑉)
5 funmpt 6543 . . . . . . . . . 10 Fun (π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴))
65a1i 11 . . . . . . . . 9 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑦 βŠ† (𝐡 β†Ύt 𝐴)) β†’ Fun (π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)))
7 restval 17316 . . . . . . . . . . . 12 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝐡 β†Ύt 𝐴) = ran (π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)))
87sseq2d 3980 . . . . . . . . . . 11 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑦 βŠ† (𝐡 β†Ύt 𝐴) ↔ 𝑦 βŠ† ran (π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴))))
98biimpa 478 . . . . . . . . . 10 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑦 βŠ† (𝐡 β†Ύt 𝐴)) β†’ 𝑦 βŠ† ran (π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)))
10 vex 3451 . . . . . . . . . . . . 13 π‘₯ ∈ V
1110inex1 5278 . . . . . . . . . . . 12 (π‘₯ ∩ 𝐴) ∈ V
1211rgenw 3065 . . . . . . . . . . 11 βˆ€π‘₯ ∈ 𝐡 (π‘₯ ∩ 𝐴) ∈ V
13 eqid 2733 . . . . . . . . . . . 12 (π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) = (π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴))
1413fnmpt 6645 . . . . . . . . . . 11 (βˆ€π‘₯ ∈ 𝐡 (π‘₯ ∩ 𝐴) ∈ V β†’ (π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) Fn 𝐡)
15 fnima 6635 . . . . . . . . . . 11 ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) Fn 𝐡 β†’ ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝐡) = ran (π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)))
1612, 14, 15mp2b 10 . . . . . . . . . 10 ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝐡) = ran (π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴))
179, 16sseqtrrdi 3999 . . . . . . . . 9 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑦 βŠ† (𝐡 β†Ύt 𝐴)) β†’ 𝑦 βŠ† ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝐡))
18 ssimaexg 6931 . . . . . . . . 9 ((𝐡 ∈ 𝑉 ∧ Fun (π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) ∧ 𝑦 βŠ† ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝐡)) β†’ βˆƒπ‘§(𝑧 βŠ† 𝐡 ∧ 𝑦 = ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧)))
194, 6, 17, 18syl3anc 1372 . . . . . . . 8 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑦 βŠ† (𝐡 β†Ύt 𝐴)) β†’ βˆƒπ‘§(𝑧 βŠ† 𝐡 ∧ 𝑦 = ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧)))
20 df-ima 5650 . . . . . . . . . . . . . . . . 17 ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧) = ran ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β†Ύ 𝑧)
21 resmpt 5995 . . . . . . . . . . . . . . . . . . 19 (𝑧 βŠ† 𝐡 β†’ ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β†Ύ 𝑧) = (π‘₯ ∈ 𝑧 ↦ (π‘₯ ∩ 𝐴)))
2221adantl 483 . . . . . . . . . . . . . . . . . 18 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β†Ύ 𝑧) = (π‘₯ ∈ 𝑧 ↦ (π‘₯ ∩ 𝐴)))
2322rneqd 5897 . . . . . . . . . . . . . . . . 17 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ ran ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β†Ύ 𝑧) = ran (π‘₯ ∈ 𝑧 ↦ (π‘₯ ∩ 𝐴)))
2420, 23eqtrid 2785 . . . . . . . . . . . . . . . 16 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧) = ran (π‘₯ ∈ 𝑧 ↦ (π‘₯ ∩ 𝐴)))
2524unieqd 4883 . . . . . . . . . . . . . . 15 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ βˆͺ ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧) = βˆͺ ran (π‘₯ ∈ 𝑧 ↦ (π‘₯ ∩ 𝐴)))
2611dfiun3 5925 . . . . . . . . . . . . . . 15 βˆͺ π‘₯ ∈ 𝑧 (π‘₯ ∩ 𝐴) = βˆͺ ran (π‘₯ ∈ 𝑧 ↦ (π‘₯ ∩ 𝐴))
2725, 26eqtr4di 2791 . . . . . . . . . . . . . 14 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ βˆͺ ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧) = βˆͺ π‘₯ ∈ 𝑧 (π‘₯ ∩ 𝐴))
28 iunin1 5036 . . . . . . . . . . . . . 14 βˆͺ π‘₯ ∈ 𝑧 (π‘₯ ∩ 𝐴) = (βˆͺ π‘₯ ∈ 𝑧 π‘₯ ∩ 𝐴)
2927, 28eqtrdi 2789 . . . . . . . . . . . . 13 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ βˆͺ ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧) = (βˆͺ π‘₯ ∈ 𝑧 π‘₯ ∩ 𝐴))
30 fvex 6859 . . . . . . . . . . . . . 14 (topGenβ€˜π΅) ∈ V
31 simpr 486 . . . . . . . . . . . . . 14 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ 𝐴 ∈ π‘Š)
32 uniiun 5022 . . . . . . . . . . . . . . . 16 βˆͺ 𝑧 = βˆͺ π‘₯ ∈ 𝑧 π‘₯
33 eltg3i 22334 . . . . . . . . . . . . . . . 16 ((𝐡 ∈ 𝑉 ∧ 𝑧 βŠ† 𝐡) β†’ βˆͺ 𝑧 ∈ (topGenβ€˜π΅))
3432, 33eqeltrrid 2839 . . . . . . . . . . . . . . 15 ((𝐡 ∈ 𝑉 ∧ 𝑧 βŠ† 𝐡) β†’ βˆͺ π‘₯ ∈ 𝑧 π‘₯ ∈ (topGenβ€˜π΅))
3534adantlr 714 . . . . . . . . . . . . . 14 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ βˆͺ π‘₯ ∈ 𝑧 π‘₯ ∈ (topGenβ€˜π΅))
36 elrestr 17318 . . . . . . . . . . . . . 14 (((topGenβ€˜π΅) ∈ V ∧ 𝐴 ∈ π‘Š ∧ βˆͺ π‘₯ ∈ 𝑧 π‘₯ ∈ (topGenβ€˜π΅)) β†’ (βˆͺ π‘₯ ∈ 𝑧 π‘₯ ∩ 𝐴) ∈ ((topGenβ€˜π΅) β†Ύt 𝐴))
3730, 31, 35, 36mp3an2ani 1469 . . . . . . . . . . . . 13 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ (βˆͺ π‘₯ ∈ 𝑧 π‘₯ ∩ 𝐴) ∈ ((topGenβ€˜π΅) β†Ύt 𝐴))
3829, 37eqeltrd 2834 . . . . . . . . . . . 12 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ βˆͺ ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧) ∈ ((topGenβ€˜π΅) β†Ύt 𝐴))
39 unieq 4880 . . . . . . . . . . . . 13 (𝑦 = ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧) β†’ βˆͺ 𝑦 = βˆͺ ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧))
4039eleq1d 2819 . . . . . . . . . . . 12 (𝑦 = ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧) β†’ (βˆͺ 𝑦 ∈ ((topGenβ€˜π΅) β†Ύt 𝐴) ↔ βˆͺ ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧) ∈ ((topGenβ€˜π΅) β†Ύt 𝐴)))
4138, 40syl5ibrcom 247 . . . . . . . . . . 11 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ (𝑦 = ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧) β†’ βˆͺ 𝑦 ∈ ((topGenβ€˜π΅) β†Ύt 𝐴)))
4241expimpd 455 . . . . . . . . . 10 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ ((𝑧 βŠ† 𝐡 ∧ 𝑦 = ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧)) β†’ βˆͺ 𝑦 ∈ ((topGenβ€˜π΅) β†Ύt 𝐴)))
4342exlimdv 1937 . . . . . . . . 9 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (βˆƒπ‘§(𝑧 βŠ† 𝐡 ∧ 𝑦 = ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧)) β†’ βˆͺ 𝑦 ∈ ((topGenβ€˜π΅) β†Ύt 𝐴)))
4443adantr 482 . . . . . . . 8 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑦 βŠ† (𝐡 β†Ύt 𝐴)) β†’ (βˆƒπ‘§(𝑧 βŠ† 𝐡 ∧ 𝑦 = ((π‘₯ ∈ 𝐡 ↦ (π‘₯ ∩ 𝐴)) β€œ 𝑧)) β†’ βˆͺ 𝑦 ∈ ((topGenβ€˜π΅) β†Ύt 𝐴)))
4519, 44mpd 15 . . . . . . 7 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑦 βŠ† (𝐡 β†Ύt 𝐴)) β†’ βˆͺ 𝑦 ∈ ((topGenβ€˜π΅) β†Ύt 𝐴))
46 eleq1 2822 . . . . . . 7 (π‘₯ = βˆͺ 𝑦 β†’ (π‘₯ ∈ ((topGenβ€˜π΅) β†Ύt 𝐴) ↔ βˆͺ 𝑦 ∈ ((topGenβ€˜π΅) β†Ύt 𝐴)))
4745, 46syl5ibrcom 247 . . . . . 6 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑦 βŠ† (𝐡 β†Ύt 𝐴)) β†’ (π‘₯ = βˆͺ 𝑦 β†’ π‘₯ ∈ ((topGenβ€˜π΅) β†Ύt 𝐴)))
4847expimpd 455 . . . . 5 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ ((𝑦 βŠ† (𝐡 β†Ύt 𝐴) ∧ π‘₯ = βˆͺ 𝑦) β†’ π‘₯ ∈ ((topGenβ€˜π΅) β†Ύt 𝐴)))
4948exlimdv 1937 . . . 4 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (βˆƒπ‘¦(𝑦 βŠ† (𝐡 β†Ύt 𝐴) ∧ π‘₯ = βˆͺ 𝑦) β†’ π‘₯ ∈ ((topGenβ€˜π΅) β†Ύt 𝐴)))
503, 49biimtrid 241 . . 3 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (π‘₯ ∈ (topGenβ€˜(𝐡 β†Ύt 𝐴)) β†’ π‘₯ ∈ ((topGenβ€˜π΅) β†Ύt 𝐴)))
5150ssrdv 3954 . 2 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (topGenβ€˜(𝐡 β†Ύt 𝐴)) βŠ† ((topGenβ€˜π΅) β†Ύt 𝐴))
52 restval 17316 . . . 4 (((topGenβ€˜π΅) ∈ V ∧ 𝐴 ∈ π‘Š) β†’ ((topGenβ€˜π΅) β†Ύt 𝐴) = ran (𝑀 ∈ (topGenβ€˜π΅) ↦ (𝑀 ∩ 𝐴)))
5330, 31, 52sylancr 588 . . 3 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ ((topGenβ€˜π΅) β†Ύt 𝐴) = ran (𝑀 ∈ (topGenβ€˜π΅) ↦ (𝑀 ∩ 𝐴)))
54 eltg3 22335 . . . . . . . 8 (𝐡 ∈ 𝑉 β†’ (𝑀 ∈ (topGenβ€˜π΅) ↔ βˆƒπ‘§(𝑧 βŠ† 𝐡 ∧ 𝑀 = βˆͺ 𝑧)))
5554adantr 482 . . . . . . 7 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 ∈ (topGenβ€˜π΅) ↔ βˆƒπ‘§(𝑧 βŠ† 𝐡 ∧ 𝑀 = βˆͺ 𝑧)))
5632ineq1i 4172 . . . . . . . . . . . 12 (βˆͺ 𝑧 ∩ 𝐴) = (βˆͺ π‘₯ ∈ 𝑧 π‘₯ ∩ 𝐴)
5756, 28eqtr4i 2764 . . . . . . . . . . 11 (βˆͺ 𝑧 ∩ 𝐴) = βˆͺ π‘₯ ∈ 𝑧 (π‘₯ ∩ 𝐴)
58 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) ∧ π‘₯ ∈ 𝑧) β†’ 𝐡 ∈ 𝑉)
59 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) ∧ π‘₯ ∈ 𝑧) β†’ 𝐴 ∈ π‘Š)
60 simpr 486 . . . . . . . . . . . . . . . . 17 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ 𝑧 βŠ† 𝐡)
6160sselda 3948 . . . . . . . . . . . . . . . 16 ((((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) ∧ π‘₯ ∈ 𝑧) β†’ π‘₯ ∈ 𝐡)
62 elrestr 17318 . . . . . . . . . . . . . . . 16 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š ∧ π‘₯ ∈ 𝐡) β†’ (π‘₯ ∩ 𝐴) ∈ (𝐡 β†Ύt 𝐴))
6358, 59, 61, 62syl3anc 1372 . . . . . . . . . . . . . . 15 ((((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) ∧ π‘₯ ∈ 𝑧) β†’ (π‘₯ ∩ 𝐴) ∈ (𝐡 β†Ύt 𝐴))
6463fmpttd 7067 . . . . . . . . . . . . . 14 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ (π‘₯ ∈ 𝑧 ↦ (π‘₯ ∩ 𝐴)):π‘§βŸΆ(𝐡 β†Ύt 𝐴))
6564frnd 6680 . . . . . . . . . . . . 13 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ ran (π‘₯ ∈ 𝑧 ↦ (π‘₯ ∩ 𝐴)) βŠ† (𝐡 β†Ύt 𝐴))
66 eltg3i 22334 . . . . . . . . . . . . 13 (((𝐡 β†Ύt 𝐴) ∈ V ∧ ran (π‘₯ ∈ 𝑧 ↦ (π‘₯ ∩ 𝐴)) βŠ† (𝐡 β†Ύt 𝐴)) β†’ βˆͺ ran (π‘₯ ∈ 𝑧 ↦ (π‘₯ ∩ 𝐴)) ∈ (topGenβ€˜(𝐡 β†Ύt 𝐴)))
671, 65, 66sylancr 588 . . . . . . . . . . . 12 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ βˆͺ ran (π‘₯ ∈ 𝑧 ↦ (π‘₯ ∩ 𝐴)) ∈ (topGenβ€˜(𝐡 β†Ύt 𝐴)))
6826, 67eqeltrid 2838 . . . . . . . . . . 11 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ βˆͺ π‘₯ ∈ 𝑧 (π‘₯ ∩ 𝐴) ∈ (topGenβ€˜(𝐡 β†Ύt 𝐴)))
6957, 68eqeltrid 2838 . . . . . . . . . 10 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ (βˆͺ 𝑧 ∩ 𝐴) ∈ (topGenβ€˜(𝐡 β†Ύt 𝐴)))
70 ineq1 4169 . . . . . . . . . . 11 (𝑀 = βˆͺ 𝑧 β†’ (𝑀 ∩ 𝐴) = (βˆͺ 𝑧 ∩ 𝐴))
7170eleq1d 2819 . . . . . . . . . 10 (𝑀 = βˆͺ 𝑧 β†’ ((𝑀 ∩ 𝐴) ∈ (topGenβ€˜(𝐡 β†Ύt 𝐴)) ↔ (βˆͺ 𝑧 ∩ 𝐴) ∈ (topGenβ€˜(𝐡 β†Ύt 𝐴))))
7269, 71syl5ibrcom 247 . . . . . . . . 9 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑧 βŠ† 𝐡) β†’ (𝑀 = βˆͺ 𝑧 β†’ (𝑀 ∩ 𝐴) ∈ (topGenβ€˜(𝐡 β†Ύt 𝐴))))
7372expimpd 455 . . . . . . . 8 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ ((𝑧 βŠ† 𝐡 ∧ 𝑀 = βˆͺ 𝑧) β†’ (𝑀 ∩ 𝐴) ∈ (topGenβ€˜(𝐡 β†Ύt 𝐴))))
7473exlimdv 1937 . . . . . . 7 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (βˆƒπ‘§(𝑧 βŠ† 𝐡 ∧ 𝑀 = βˆͺ 𝑧) β†’ (𝑀 ∩ 𝐴) ∈ (topGenβ€˜(𝐡 β†Ύt 𝐴))))
7555, 74sylbid 239 . . . . . 6 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 ∈ (topGenβ€˜π΅) β†’ (𝑀 ∩ 𝐴) ∈ (topGenβ€˜(𝐡 β†Ύt 𝐴))))
7675imp 408 . . . . 5 (((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ 𝑀 ∈ (topGenβ€˜π΅)) β†’ (𝑀 ∩ 𝐴) ∈ (topGenβ€˜(𝐡 β†Ύt 𝐴)))
7776fmpttd 7067 . . . 4 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 ∈ (topGenβ€˜π΅) ↦ (𝑀 ∩ 𝐴)):(topGenβ€˜π΅)⟢(topGenβ€˜(𝐡 β†Ύt 𝐴)))
7877frnd 6680 . . 3 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ ran (𝑀 ∈ (topGenβ€˜π΅) ↦ (𝑀 ∩ 𝐴)) βŠ† (topGenβ€˜(𝐡 β†Ύt 𝐴)))
7953, 78eqsstrd 3986 . 2 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ ((topGenβ€˜π΅) β†Ύt 𝐴) βŠ† (topGenβ€˜(𝐡 β†Ύt 𝐴)))
8051, 79eqssd 3965 1 ((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (topGenβ€˜(𝐡 β†Ύt 𝐴)) = ((topGenβ€˜π΅) β†Ύt 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  βˆ€wral 3061  Vcvv 3447   ∩ cin 3913   βŠ† wss 3914  βˆͺ cuni 4869  βˆͺ ciun 4958   ↦ cmpt 5192  ran crn 5638   β†Ύ cres 5639   β€œ cima 5640  Fun wfun 6494   Fn wfn 6495  β€˜cfv 6500  (class class class)co 7361   β†Ύt crest 17310  topGenctg 17327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-rest 17312  df-topgen 17333
This theorem is referenced by:  resttop  22534  ordtrest2  22578  2ndcrest  22828  txrest  23005  xkoptsub  23028  xrtgioo  24192  ordtrest2NEW  32568  ptrest  36127
  Copyright terms: Public domain W3C validator