MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgrest Structured version   Visualization version   GIF version

Theorem tgrest 23167
Description: A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
tgrest ((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴))

Proof of Theorem tgrest
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7464 . . . . 5 (𝐵t 𝐴) ∈ V
2 eltg3 22969 . . . . 5 ((𝐵t 𝐴) ∈ V → (𝑥 ∈ (topGen‘(𝐵t 𝐴)) ↔ ∃𝑦(𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦)))
31, 2ax-mp 5 . . . 4 (𝑥 ∈ (topGen‘(𝐵t 𝐴)) ↔ ∃𝑦(𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦))
4 simpll 767 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝐵𝑉)
5 funmpt 6604 . . . . . . . . . 10 Fun (𝑥𝐵 ↦ (𝑥𝐴))
65a1i 11 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → Fun (𝑥𝐵 ↦ (𝑥𝐴)))
7 restval 17471 . . . . . . . . . . . 12 ((𝐵𝑉𝐴𝑊) → (𝐵t 𝐴) = ran (𝑥𝐵 ↦ (𝑥𝐴)))
87sseq2d 4016 . . . . . . . . . . 11 ((𝐵𝑉𝐴𝑊) → (𝑦 ⊆ (𝐵t 𝐴) ↔ 𝑦 ⊆ ran (𝑥𝐵 ↦ (𝑥𝐴))))
98biimpa 476 . . . . . . . . . 10 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝑦 ⊆ ran (𝑥𝐵 ↦ (𝑥𝐴)))
10 vex 3484 . . . . . . . . . . . . 13 𝑥 ∈ V
1110inex1 5317 . . . . . . . . . . . 12 (𝑥𝐴) ∈ V
1211rgenw 3065 . . . . . . . . . . 11 𝑥𝐵 (𝑥𝐴) ∈ V
13 eqid 2737 . . . . . . . . . . . 12 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
1413fnmpt 6708 . . . . . . . . . . 11 (∀𝑥𝐵 (𝑥𝐴) ∈ V → (𝑥𝐵 ↦ (𝑥𝐴)) Fn 𝐵)
15 fnima 6698 . . . . . . . . . . 11 ((𝑥𝐵 ↦ (𝑥𝐴)) Fn 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵) = ran (𝑥𝐵 ↦ (𝑥𝐴)))
1612, 14, 15mp2b 10 . . . . . . . . . 10 ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵) = ran (𝑥𝐵 ↦ (𝑥𝐴))
179, 16sseqtrrdi 4025 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝑦 ⊆ ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵))
18 ssimaexg 6995 . . . . . . . . 9 ((𝐵𝑉 ∧ Fun (𝑥𝐵 ↦ (𝑥𝐴)) ∧ 𝑦 ⊆ ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵)) → ∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)))
194, 6, 17, 18syl3anc 1373 . . . . . . . 8 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → ∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)))
20 df-ima 5698 . . . . . . . . . . . . . . . . 17 ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ran ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧)
21 resmpt 6055 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧) = (𝑥𝑧 ↦ (𝑥𝐴)))
2221adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧) = (𝑥𝑧 ↦ (𝑥𝐴)))
2322rneqd 5949 . . . . . . . . . . . . . . . . 17 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ran ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧) = ran (𝑥𝑧 ↦ (𝑥𝐴)))
2420, 23eqtrid 2789 . . . . . . . . . . . . . . . 16 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ran (𝑥𝑧 ↦ (𝑥𝐴)))
2524unieqd 4920 . . . . . . . . . . . . . . 15 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ran (𝑥𝑧 ↦ (𝑥𝐴)))
2611dfiun3 5980 . . . . . . . . . . . . . . 15 𝑥𝑧 (𝑥𝐴) = ran (𝑥𝑧 ↦ (𝑥𝐴))
2725, 26eqtr4di 2795 . . . . . . . . . . . . . 14 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = 𝑥𝑧 (𝑥𝐴))
28 iunin1 5072 . . . . . . . . . . . . . 14 𝑥𝑧 (𝑥𝐴) = ( 𝑥𝑧 𝑥𝐴)
2927, 28eqtrdi 2793 . . . . . . . . . . . . 13 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ( 𝑥𝑧 𝑥𝐴))
30 fvex 6919 . . . . . . . . . . . . . 14 (topGen‘𝐵) ∈ V
31 simpr 484 . . . . . . . . . . . . . 14 ((𝐵𝑉𝐴𝑊) → 𝐴𝑊)
32 uniiun 5058 . . . . . . . . . . . . . . . 16 𝑧 = 𝑥𝑧 𝑥
33 eltg3i 22968 . . . . . . . . . . . . . . . 16 ((𝐵𝑉𝑧𝐵) → 𝑧 ∈ (topGen‘𝐵))
3432, 33eqeltrrid 2846 . . . . . . . . . . . . . . 15 ((𝐵𝑉𝑧𝐵) → 𝑥𝑧 𝑥 ∈ (topGen‘𝐵))
3534adantlr 715 . . . . . . . . . . . . . 14 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → 𝑥𝑧 𝑥 ∈ (topGen‘𝐵))
36 elrestr 17473 . . . . . . . . . . . . . 14 (((topGen‘𝐵) ∈ V ∧ 𝐴𝑊 𝑥𝑧 𝑥 ∈ (topGen‘𝐵)) → ( 𝑥𝑧 𝑥𝐴) ∈ ((topGen‘𝐵) ↾t 𝐴))
3730, 31, 35, 36mp3an2ani 1470 . . . . . . . . . . . . 13 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ( 𝑥𝑧 𝑥𝐴) ∈ ((topGen‘𝐵) ↾t 𝐴))
3829, 37eqeltrd 2841 . . . . . . . . . . . 12 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) ∈ ((topGen‘𝐵) ↾t 𝐴))
39 unieq 4918 . . . . . . . . . . . . 13 (𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) → 𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧))
4039eleq1d 2826 . . . . . . . . . . . 12 (𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) → ( 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴) ↔ ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) ∈ ((topGen‘𝐵) ↾t 𝐴)))
4138, 40syl5ibrcom 247 . . . . . . . . . . 11 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → (𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4241expimpd 453 . . . . . . . . . 10 ((𝐵𝑉𝐴𝑊) → ((𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4342exlimdv 1933 . . . . . . . . 9 ((𝐵𝑉𝐴𝑊) → (∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4443adantr 480 . . . . . . . 8 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → (∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4519, 44mpd 15 . . . . . . 7 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴))
46 eleq1 2829 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴) ↔ 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4745, 46syl5ibrcom 247 . . . . . 6 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → (𝑥 = 𝑦𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4847expimpd 453 . . . . 5 ((𝐵𝑉𝐴𝑊) → ((𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4948exlimdv 1933 . . . 4 ((𝐵𝑉𝐴𝑊) → (∃𝑦(𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
503, 49biimtrid 242 . . 3 ((𝐵𝑉𝐴𝑊) → (𝑥 ∈ (topGen‘(𝐵t 𝐴)) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
5150ssrdv 3989 . 2 ((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) ⊆ ((topGen‘𝐵) ↾t 𝐴))
52 restval 17471 . . . 4 (((topGen‘𝐵) ∈ V ∧ 𝐴𝑊) → ((topGen‘𝐵) ↾t 𝐴) = ran (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)))
5330, 31, 52sylancr 587 . . 3 ((𝐵𝑉𝐴𝑊) → ((topGen‘𝐵) ↾t 𝐴) = ran (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)))
54 eltg3 22969 . . . . . . . 8 (𝐵𝑉 → (𝑤 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑤 = 𝑧)))
5554adantr 480 . . . . . . 7 ((𝐵𝑉𝐴𝑊) → (𝑤 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑤 = 𝑧)))
5632ineq1i 4216 . . . . . . . . . . . 12 ( 𝑧𝐴) = ( 𝑥𝑧 𝑥𝐴)
5756, 28eqtr4i 2768 . . . . . . . . . . 11 ( 𝑧𝐴) = 𝑥𝑧 (𝑥𝐴)
58 simplll 775 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → 𝐵𝑉)
59 simpllr 776 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → 𝐴𝑊)
60 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → 𝑧𝐵)
6160sselda 3983 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → 𝑥𝐵)
62 elrestr 17473 . . . . . . . . . . . . . . . 16 ((𝐵𝑉𝐴𝑊𝑥𝐵) → (𝑥𝐴) ∈ (𝐵t 𝐴))
6358, 59, 61, 62syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → (𝑥𝐴) ∈ (𝐵t 𝐴))
6463fmpttd 7135 . . . . . . . . . . . . . 14 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → (𝑥𝑧 ↦ (𝑥𝐴)):𝑧⟶(𝐵t 𝐴))
6564frnd 6744 . . . . . . . . . . . . 13 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ran (𝑥𝑧 ↦ (𝑥𝐴)) ⊆ (𝐵t 𝐴))
66 eltg3i 22968 . . . . . . . . . . . . 13 (((𝐵t 𝐴) ∈ V ∧ ran (𝑥𝑧 ↦ (𝑥𝐴)) ⊆ (𝐵t 𝐴)) → ran (𝑥𝑧 ↦ (𝑥𝐴)) ∈ (topGen‘(𝐵t 𝐴)))
671, 65, 66sylancr 587 . . . . . . . . . . . 12 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ran (𝑥𝑧 ↦ (𝑥𝐴)) ∈ (topGen‘(𝐵t 𝐴)))
6826, 67eqeltrid 2845 . . . . . . . . . . 11 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → 𝑥𝑧 (𝑥𝐴) ∈ (topGen‘(𝐵t 𝐴)))
6957, 68eqeltrid 2845 . . . . . . . . . 10 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ( 𝑧𝐴) ∈ (topGen‘(𝐵t 𝐴)))
70 ineq1 4213 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤𝐴) = ( 𝑧𝐴))
7170eleq1d 2826 . . . . . . . . . 10 (𝑤 = 𝑧 → ((𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴)) ↔ ( 𝑧𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7269, 71syl5ibrcom 247 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → (𝑤 = 𝑧 → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7372expimpd 453 . . . . . . . 8 ((𝐵𝑉𝐴𝑊) → ((𝑧𝐵𝑤 = 𝑧) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7473exlimdv 1933 . . . . . . 7 ((𝐵𝑉𝐴𝑊) → (∃𝑧(𝑧𝐵𝑤 = 𝑧) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7555, 74sylbid 240 . . . . . 6 ((𝐵𝑉𝐴𝑊) → (𝑤 ∈ (topGen‘𝐵) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7675imp 406 . . . . 5 (((𝐵𝑉𝐴𝑊) ∧ 𝑤 ∈ (topGen‘𝐵)) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴)))
7776fmpttd 7135 . . . 4 ((𝐵𝑉𝐴𝑊) → (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)):(topGen‘𝐵)⟶(topGen‘(𝐵t 𝐴)))
7877frnd 6744 . . 3 ((𝐵𝑉𝐴𝑊) → ran (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)) ⊆ (topGen‘(𝐵t 𝐴)))
7953, 78eqsstrd 4018 . 2 ((𝐵𝑉𝐴𝑊) → ((topGen‘𝐵) ↾t 𝐴) ⊆ (topGen‘(𝐵t 𝐴)))
8051, 79eqssd 4001 1 ((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3061  Vcvv 3480  cin 3950  wss 3951   cuni 4907   ciun 4991  cmpt 5225  ran crn 5686  cres 5687  cima 5688  Fun wfun 6555   Fn wfn 6556  cfv 6561  (class class class)co 7431  t crest 17465  topGenctg 17482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rest 17467  df-topgen 17488
This theorem is referenced by:  resttop  23168  ordtrest2  23212  2ndcrest  23462  txrest  23639  xkoptsub  23662  xrtgioo  24828  ordtrest2NEW  33922  ptrest  37626
  Copyright terms: Public domain W3C validator