MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgrest Structured version   Visualization version   GIF version

Theorem tgrest 23095
Description: A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
tgrest ((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴))

Proof of Theorem tgrest
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7436 . . . . 5 (𝐵t 𝐴) ∈ V
2 eltg3 22898 . . . . 5 ((𝐵t 𝐴) ∈ V → (𝑥 ∈ (topGen‘(𝐵t 𝐴)) ↔ ∃𝑦(𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦)))
31, 2ax-mp 5 . . . 4 (𝑥 ∈ (topGen‘(𝐵t 𝐴)) ↔ ∃𝑦(𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦))
4 simpll 766 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝐵𝑉)
5 funmpt 6573 . . . . . . . . . 10 Fun (𝑥𝐵 ↦ (𝑥𝐴))
65a1i 11 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → Fun (𝑥𝐵 ↦ (𝑥𝐴)))
7 restval 17438 . . . . . . . . . . . 12 ((𝐵𝑉𝐴𝑊) → (𝐵t 𝐴) = ran (𝑥𝐵 ↦ (𝑥𝐴)))
87sseq2d 3991 . . . . . . . . . . 11 ((𝐵𝑉𝐴𝑊) → (𝑦 ⊆ (𝐵t 𝐴) ↔ 𝑦 ⊆ ran (𝑥𝐵 ↦ (𝑥𝐴))))
98biimpa 476 . . . . . . . . . 10 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝑦 ⊆ ran (𝑥𝐵 ↦ (𝑥𝐴)))
10 vex 3463 . . . . . . . . . . . . 13 𝑥 ∈ V
1110inex1 5287 . . . . . . . . . . . 12 (𝑥𝐴) ∈ V
1211rgenw 3055 . . . . . . . . . . 11 𝑥𝐵 (𝑥𝐴) ∈ V
13 eqid 2735 . . . . . . . . . . . 12 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
1413fnmpt 6677 . . . . . . . . . . 11 (∀𝑥𝐵 (𝑥𝐴) ∈ V → (𝑥𝐵 ↦ (𝑥𝐴)) Fn 𝐵)
15 fnima 6667 . . . . . . . . . . 11 ((𝑥𝐵 ↦ (𝑥𝐴)) Fn 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵) = ran (𝑥𝐵 ↦ (𝑥𝐴)))
1612, 14, 15mp2b 10 . . . . . . . . . 10 ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵) = ran (𝑥𝐵 ↦ (𝑥𝐴))
179, 16sseqtrrdi 4000 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝑦 ⊆ ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵))
18 ssimaexg 6964 . . . . . . . . 9 ((𝐵𝑉 ∧ Fun (𝑥𝐵 ↦ (𝑥𝐴)) ∧ 𝑦 ⊆ ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵)) → ∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)))
194, 6, 17, 18syl3anc 1373 . . . . . . . 8 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → ∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)))
20 df-ima 5667 . . . . . . . . . . . . . . . . 17 ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ran ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧)
21 resmpt 6024 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧) = (𝑥𝑧 ↦ (𝑥𝐴)))
2221adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧) = (𝑥𝑧 ↦ (𝑥𝐴)))
2322rneqd 5918 . . . . . . . . . . . . . . . . 17 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ran ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧) = ran (𝑥𝑧 ↦ (𝑥𝐴)))
2420, 23eqtrid 2782 . . . . . . . . . . . . . . . 16 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ran (𝑥𝑧 ↦ (𝑥𝐴)))
2524unieqd 4896 . . . . . . . . . . . . . . 15 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ran (𝑥𝑧 ↦ (𝑥𝐴)))
2611dfiun3 5949 . . . . . . . . . . . . . . 15 𝑥𝑧 (𝑥𝐴) = ran (𝑥𝑧 ↦ (𝑥𝐴))
2725, 26eqtr4di 2788 . . . . . . . . . . . . . 14 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = 𝑥𝑧 (𝑥𝐴))
28 iunin1 5048 . . . . . . . . . . . . . 14 𝑥𝑧 (𝑥𝐴) = ( 𝑥𝑧 𝑥𝐴)
2927, 28eqtrdi 2786 . . . . . . . . . . . . 13 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ( 𝑥𝑧 𝑥𝐴))
30 fvex 6888 . . . . . . . . . . . . . 14 (topGen‘𝐵) ∈ V
31 simpr 484 . . . . . . . . . . . . . 14 ((𝐵𝑉𝐴𝑊) → 𝐴𝑊)
32 uniiun 5034 . . . . . . . . . . . . . . . 16 𝑧 = 𝑥𝑧 𝑥
33 eltg3i 22897 . . . . . . . . . . . . . . . 16 ((𝐵𝑉𝑧𝐵) → 𝑧 ∈ (topGen‘𝐵))
3432, 33eqeltrrid 2839 . . . . . . . . . . . . . . 15 ((𝐵𝑉𝑧𝐵) → 𝑥𝑧 𝑥 ∈ (topGen‘𝐵))
3534adantlr 715 . . . . . . . . . . . . . 14 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → 𝑥𝑧 𝑥 ∈ (topGen‘𝐵))
36 elrestr 17440 . . . . . . . . . . . . . 14 (((topGen‘𝐵) ∈ V ∧ 𝐴𝑊 𝑥𝑧 𝑥 ∈ (topGen‘𝐵)) → ( 𝑥𝑧 𝑥𝐴) ∈ ((topGen‘𝐵) ↾t 𝐴))
3730, 31, 35, 36mp3an2ani 1470 . . . . . . . . . . . . 13 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ( 𝑥𝑧 𝑥𝐴) ∈ ((topGen‘𝐵) ↾t 𝐴))
3829, 37eqeltrd 2834 . . . . . . . . . . . 12 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) ∈ ((topGen‘𝐵) ↾t 𝐴))
39 unieq 4894 . . . . . . . . . . . . 13 (𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) → 𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧))
4039eleq1d 2819 . . . . . . . . . . . 12 (𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) → ( 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴) ↔ ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) ∈ ((topGen‘𝐵) ↾t 𝐴)))
4138, 40syl5ibrcom 247 . . . . . . . . . . 11 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → (𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4241expimpd 453 . . . . . . . . . 10 ((𝐵𝑉𝐴𝑊) → ((𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4342exlimdv 1933 . . . . . . . . 9 ((𝐵𝑉𝐴𝑊) → (∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4443adantr 480 . . . . . . . 8 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → (∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4519, 44mpd 15 . . . . . . 7 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴))
46 eleq1 2822 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴) ↔ 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4745, 46syl5ibrcom 247 . . . . . 6 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → (𝑥 = 𝑦𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4847expimpd 453 . . . . 5 ((𝐵𝑉𝐴𝑊) → ((𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4948exlimdv 1933 . . . 4 ((𝐵𝑉𝐴𝑊) → (∃𝑦(𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
503, 49biimtrid 242 . . 3 ((𝐵𝑉𝐴𝑊) → (𝑥 ∈ (topGen‘(𝐵t 𝐴)) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
5150ssrdv 3964 . 2 ((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) ⊆ ((topGen‘𝐵) ↾t 𝐴))
52 restval 17438 . . . 4 (((topGen‘𝐵) ∈ V ∧ 𝐴𝑊) → ((topGen‘𝐵) ↾t 𝐴) = ran (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)))
5330, 31, 52sylancr 587 . . 3 ((𝐵𝑉𝐴𝑊) → ((topGen‘𝐵) ↾t 𝐴) = ran (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)))
54 eltg3 22898 . . . . . . . 8 (𝐵𝑉 → (𝑤 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑤 = 𝑧)))
5554adantr 480 . . . . . . 7 ((𝐵𝑉𝐴𝑊) → (𝑤 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑤 = 𝑧)))
5632ineq1i 4191 . . . . . . . . . . . 12 ( 𝑧𝐴) = ( 𝑥𝑧 𝑥𝐴)
5756, 28eqtr4i 2761 . . . . . . . . . . 11 ( 𝑧𝐴) = 𝑥𝑧 (𝑥𝐴)
58 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → 𝐵𝑉)
59 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → 𝐴𝑊)
60 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → 𝑧𝐵)
6160sselda 3958 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → 𝑥𝐵)
62 elrestr 17440 . . . . . . . . . . . . . . . 16 ((𝐵𝑉𝐴𝑊𝑥𝐵) → (𝑥𝐴) ∈ (𝐵t 𝐴))
6358, 59, 61, 62syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → (𝑥𝐴) ∈ (𝐵t 𝐴))
6463fmpttd 7104 . . . . . . . . . . . . . 14 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → (𝑥𝑧 ↦ (𝑥𝐴)):𝑧⟶(𝐵t 𝐴))
6564frnd 6713 . . . . . . . . . . . . 13 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ran (𝑥𝑧 ↦ (𝑥𝐴)) ⊆ (𝐵t 𝐴))
66 eltg3i 22897 . . . . . . . . . . . . 13 (((𝐵t 𝐴) ∈ V ∧ ran (𝑥𝑧 ↦ (𝑥𝐴)) ⊆ (𝐵t 𝐴)) → ran (𝑥𝑧 ↦ (𝑥𝐴)) ∈ (topGen‘(𝐵t 𝐴)))
671, 65, 66sylancr 587 . . . . . . . . . . . 12 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ran (𝑥𝑧 ↦ (𝑥𝐴)) ∈ (topGen‘(𝐵t 𝐴)))
6826, 67eqeltrid 2838 . . . . . . . . . . 11 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → 𝑥𝑧 (𝑥𝐴) ∈ (topGen‘(𝐵t 𝐴)))
6957, 68eqeltrid 2838 . . . . . . . . . 10 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ( 𝑧𝐴) ∈ (topGen‘(𝐵t 𝐴)))
70 ineq1 4188 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤𝐴) = ( 𝑧𝐴))
7170eleq1d 2819 . . . . . . . . . 10 (𝑤 = 𝑧 → ((𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴)) ↔ ( 𝑧𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7269, 71syl5ibrcom 247 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → (𝑤 = 𝑧 → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7372expimpd 453 . . . . . . . 8 ((𝐵𝑉𝐴𝑊) → ((𝑧𝐵𝑤 = 𝑧) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7473exlimdv 1933 . . . . . . 7 ((𝐵𝑉𝐴𝑊) → (∃𝑧(𝑧𝐵𝑤 = 𝑧) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7555, 74sylbid 240 . . . . . 6 ((𝐵𝑉𝐴𝑊) → (𝑤 ∈ (topGen‘𝐵) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7675imp 406 . . . . 5 (((𝐵𝑉𝐴𝑊) ∧ 𝑤 ∈ (topGen‘𝐵)) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴)))
7776fmpttd 7104 . . . 4 ((𝐵𝑉𝐴𝑊) → (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)):(topGen‘𝐵)⟶(topGen‘(𝐵t 𝐴)))
7877frnd 6713 . . 3 ((𝐵𝑉𝐴𝑊) → ran (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)) ⊆ (topGen‘(𝐵t 𝐴)))
7953, 78eqsstrd 3993 . 2 ((𝐵𝑉𝐴𝑊) → ((topGen‘𝐵) ↾t 𝐴) ⊆ (topGen‘(𝐵t 𝐴)))
8051, 79eqssd 3976 1 ((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3051  Vcvv 3459  cin 3925  wss 3926   cuni 4883   ciun 4967  cmpt 5201  ran crn 5655  cres 5656  cima 5657  Fun wfun 6524   Fn wfn 6525  cfv 6530  (class class class)co 7403  t crest 17432  topGenctg 17449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-rest 17434  df-topgen 17455
This theorem is referenced by:  resttop  23096  ordtrest2  23140  2ndcrest  23390  txrest  23567  xkoptsub  23590  xrtgioo  24744  ordtrest2NEW  33900  ptrest  37589
  Copyright terms: Public domain W3C validator