MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgrest Structured version   Visualization version   GIF version

Theorem tgrest 23075
Description: A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
tgrest ((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴))

Proof of Theorem tgrest
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7379 . . . . 5 (𝐵t 𝐴) ∈ V
2 eltg3 22878 . . . . 5 ((𝐵t 𝐴) ∈ V → (𝑥 ∈ (topGen‘(𝐵t 𝐴)) ↔ ∃𝑦(𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦)))
31, 2ax-mp 5 . . . 4 (𝑥 ∈ (topGen‘(𝐵t 𝐴)) ↔ ∃𝑦(𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦))
4 simpll 766 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝐵𝑉)
5 funmpt 6519 . . . . . . . . . 10 Fun (𝑥𝐵 ↦ (𝑥𝐴))
65a1i 11 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → Fun (𝑥𝐵 ↦ (𝑥𝐴)))
7 restval 17330 . . . . . . . . . . . 12 ((𝐵𝑉𝐴𝑊) → (𝐵t 𝐴) = ran (𝑥𝐵 ↦ (𝑥𝐴)))
87sseq2d 3967 . . . . . . . . . . 11 ((𝐵𝑉𝐴𝑊) → (𝑦 ⊆ (𝐵t 𝐴) ↔ 𝑦 ⊆ ran (𝑥𝐵 ↦ (𝑥𝐴))))
98biimpa 476 . . . . . . . . . 10 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝑦 ⊆ ran (𝑥𝐵 ↦ (𝑥𝐴)))
10 vex 3440 . . . . . . . . . . . . 13 𝑥 ∈ V
1110inex1 5255 . . . . . . . . . . . 12 (𝑥𝐴) ∈ V
1211rgenw 3051 . . . . . . . . . . 11 𝑥𝐵 (𝑥𝐴) ∈ V
13 eqid 2731 . . . . . . . . . . . 12 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
1413fnmpt 6621 . . . . . . . . . . 11 (∀𝑥𝐵 (𝑥𝐴) ∈ V → (𝑥𝐵 ↦ (𝑥𝐴)) Fn 𝐵)
15 fnima 6611 . . . . . . . . . . 11 ((𝑥𝐵 ↦ (𝑥𝐴)) Fn 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵) = ran (𝑥𝐵 ↦ (𝑥𝐴)))
1612, 14, 15mp2b 10 . . . . . . . . . 10 ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵) = ran (𝑥𝐵 ↦ (𝑥𝐴))
179, 16sseqtrrdi 3976 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝑦 ⊆ ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵))
18 ssimaexg 6908 . . . . . . . . 9 ((𝐵𝑉 ∧ Fun (𝑥𝐵 ↦ (𝑥𝐴)) ∧ 𝑦 ⊆ ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵)) → ∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)))
194, 6, 17, 18syl3anc 1373 . . . . . . . 8 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → ∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)))
20 df-ima 5629 . . . . . . . . . . . . . . . . 17 ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ran ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧)
21 resmpt 5986 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧) = (𝑥𝑧 ↦ (𝑥𝐴)))
2221adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧) = (𝑥𝑧 ↦ (𝑥𝐴)))
2322rneqd 5878 . . . . . . . . . . . . . . . . 17 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ran ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧) = ran (𝑥𝑧 ↦ (𝑥𝐴)))
2420, 23eqtrid 2778 . . . . . . . . . . . . . . . 16 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ran (𝑥𝑧 ↦ (𝑥𝐴)))
2524unieqd 4872 . . . . . . . . . . . . . . 15 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ran (𝑥𝑧 ↦ (𝑥𝐴)))
2611dfiun3 5909 . . . . . . . . . . . . . . 15 𝑥𝑧 (𝑥𝐴) = ran (𝑥𝑧 ↦ (𝑥𝐴))
2725, 26eqtr4di 2784 . . . . . . . . . . . . . 14 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = 𝑥𝑧 (𝑥𝐴))
28 iunin1 5020 . . . . . . . . . . . . . 14 𝑥𝑧 (𝑥𝐴) = ( 𝑥𝑧 𝑥𝐴)
2927, 28eqtrdi 2782 . . . . . . . . . . . . 13 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ( 𝑥𝑧 𝑥𝐴))
30 fvex 6835 . . . . . . . . . . . . . 14 (topGen‘𝐵) ∈ V
31 simpr 484 . . . . . . . . . . . . . 14 ((𝐵𝑉𝐴𝑊) → 𝐴𝑊)
32 uniiun 5007 . . . . . . . . . . . . . . . 16 𝑧 = 𝑥𝑧 𝑥
33 eltg3i 22877 . . . . . . . . . . . . . . . 16 ((𝐵𝑉𝑧𝐵) → 𝑧 ∈ (topGen‘𝐵))
3432, 33eqeltrrid 2836 . . . . . . . . . . . . . . 15 ((𝐵𝑉𝑧𝐵) → 𝑥𝑧 𝑥 ∈ (topGen‘𝐵))
3534adantlr 715 . . . . . . . . . . . . . 14 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → 𝑥𝑧 𝑥 ∈ (topGen‘𝐵))
36 elrestr 17332 . . . . . . . . . . . . . 14 (((topGen‘𝐵) ∈ V ∧ 𝐴𝑊 𝑥𝑧 𝑥 ∈ (topGen‘𝐵)) → ( 𝑥𝑧 𝑥𝐴) ∈ ((topGen‘𝐵) ↾t 𝐴))
3730, 31, 35, 36mp3an2ani 1470 . . . . . . . . . . . . 13 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ( 𝑥𝑧 𝑥𝐴) ∈ ((topGen‘𝐵) ↾t 𝐴))
3829, 37eqeltrd 2831 . . . . . . . . . . . 12 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) ∈ ((topGen‘𝐵) ↾t 𝐴))
39 unieq 4870 . . . . . . . . . . . . 13 (𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) → 𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧))
4039eleq1d 2816 . . . . . . . . . . . 12 (𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) → ( 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴) ↔ ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) ∈ ((topGen‘𝐵) ↾t 𝐴)))
4138, 40syl5ibrcom 247 . . . . . . . . . . 11 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → (𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4241expimpd 453 . . . . . . . . . 10 ((𝐵𝑉𝐴𝑊) → ((𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4342exlimdv 1934 . . . . . . . . 9 ((𝐵𝑉𝐴𝑊) → (∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4443adantr 480 . . . . . . . 8 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → (∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4519, 44mpd 15 . . . . . . 7 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴))
46 eleq1 2819 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴) ↔ 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4745, 46syl5ibrcom 247 . . . . . 6 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → (𝑥 = 𝑦𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4847expimpd 453 . . . . 5 ((𝐵𝑉𝐴𝑊) → ((𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4948exlimdv 1934 . . . 4 ((𝐵𝑉𝐴𝑊) → (∃𝑦(𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
503, 49biimtrid 242 . . 3 ((𝐵𝑉𝐴𝑊) → (𝑥 ∈ (topGen‘(𝐵t 𝐴)) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
5150ssrdv 3940 . 2 ((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) ⊆ ((topGen‘𝐵) ↾t 𝐴))
52 restval 17330 . . . 4 (((topGen‘𝐵) ∈ V ∧ 𝐴𝑊) → ((topGen‘𝐵) ↾t 𝐴) = ran (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)))
5330, 31, 52sylancr 587 . . 3 ((𝐵𝑉𝐴𝑊) → ((topGen‘𝐵) ↾t 𝐴) = ran (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)))
54 eltg3 22878 . . . . . . . 8 (𝐵𝑉 → (𝑤 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑤 = 𝑧)))
5554adantr 480 . . . . . . 7 ((𝐵𝑉𝐴𝑊) → (𝑤 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑤 = 𝑧)))
5632ineq1i 4166 . . . . . . . . . . . 12 ( 𝑧𝐴) = ( 𝑥𝑧 𝑥𝐴)
5756, 28eqtr4i 2757 . . . . . . . . . . 11 ( 𝑧𝐴) = 𝑥𝑧 (𝑥𝐴)
58 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → 𝐵𝑉)
59 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → 𝐴𝑊)
60 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → 𝑧𝐵)
6160sselda 3934 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → 𝑥𝐵)
62 elrestr 17332 . . . . . . . . . . . . . . . 16 ((𝐵𝑉𝐴𝑊𝑥𝐵) → (𝑥𝐴) ∈ (𝐵t 𝐴))
6358, 59, 61, 62syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → (𝑥𝐴) ∈ (𝐵t 𝐴))
6463fmpttd 7048 . . . . . . . . . . . . . 14 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → (𝑥𝑧 ↦ (𝑥𝐴)):𝑧⟶(𝐵t 𝐴))
6564frnd 6659 . . . . . . . . . . . . 13 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ran (𝑥𝑧 ↦ (𝑥𝐴)) ⊆ (𝐵t 𝐴))
66 eltg3i 22877 . . . . . . . . . . . . 13 (((𝐵t 𝐴) ∈ V ∧ ran (𝑥𝑧 ↦ (𝑥𝐴)) ⊆ (𝐵t 𝐴)) → ran (𝑥𝑧 ↦ (𝑥𝐴)) ∈ (topGen‘(𝐵t 𝐴)))
671, 65, 66sylancr 587 . . . . . . . . . . . 12 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ran (𝑥𝑧 ↦ (𝑥𝐴)) ∈ (topGen‘(𝐵t 𝐴)))
6826, 67eqeltrid 2835 . . . . . . . . . . 11 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → 𝑥𝑧 (𝑥𝐴) ∈ (topGen‘(𝐵t 𝐴)))
6957, 68eqeltrid 2835 . . . . . . . . . 10 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ( 𝑧𝐴) ∈ (topGen‘(𝐵t 𝐴)))
70 ineq1 4163 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤𝐴) = ( 𝑧𝐴))
7170eleq1d 2816 . . . . . . . . . 10 (𝑤 = 𝑧 → ((𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴)) ↔ ( 𝑧𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7269, 71syl5ibrcom 247 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → (𝑤 = 𝑧 → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7372expimpd 453 . . . . . . . 8 ((𝐵𝑉𝐴𝑊) → ((𝑧𝐵𝑤 = 𝑧) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7473exlimdv 1934 . . . . . . 7 ((𝐵𝑉𝐴𝑊) → (∃𝑧(𝑧𝐵𝑤 = 𝑧) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7555, 74sylbid 240 . . . . . 6 ((𝐵𝑉𝐴𝑊) → (𝑤 ∈ (topGen‘𝐵) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7675imp 406 . . . . 5 (((𝐵𝑉𝐴𝑊) ∧ 𝑤 ∈ (topGen‘𝐵)) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴)))
7776fmpttd 7048 . . . 4 ((𝐵𝑉𝐴𝑊) → (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)):(topGen‘𝐵)⟶(topGen‘(𝐵t 𝐴)))
7877frnd 6659 . . 3 ((𝐵𝑉𝐴𝑊) → ran (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)) ⊆ (topGen‘(𝐵t 𝐴)))
7953, 78eqsstrd 3969 . 2 ((𝐵𝑉𝐴𝑊) → ((topGen‘𝐵) ↾t 𝐴) ⊆ (topGen‘(𝐵t 𝐴)))
8051, 79eqssd 3952 1 ((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  Vcvv 3436  cin 3901  wss 3902   cuni 4859   ciun 4941  cmpt 5172  ran crn 5617  cres 5618  cima 5619  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346  t crest 17324  topGenctg 17341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-rest 17326  df-topgen 17347
This theorem is referenced by:  resttop  23076  ordtrest2  23120  2ndcrest  23370  txrest  23547  xkoptsub  23570  xrtgioo  24723  ordtrest2NEW  33934  ptrest  37665
  Copyright terms: Public domain W3C validator