MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgrest Structured version   Visualization version   GIF version

Theorem tgrest 23075
Description: A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
tgrest ((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴))

Proof of Theorem tgrest
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7385 . . . . 5 (𝐵t 𝐴) ∈ V
2 eltg3 22878 . . . . 5 ((𝐵t 𝐴) ∈ V → (𝑥 ∈ (topGen‘(𝐵t 𝐴)) ↔ ∃𝑦(𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦)))
31, 2ax-mp 5 . . . 4 (𝑥 ∈ (topGen‘(𝐵t 𝐴)) ↔ ∃𝑦(𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦))
4 simpll 766 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝐵𝑉)
5 funmpt 6524 . . . . . . . . . 10 Fun (𝑥𝐵 ↦ (𝑥𝐴))
65a1i 11 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → Fun (𝑥𝐵 ↦ (𝑥𝐴)))
7 restval 17332 . . . . . . . . . . . 12 ((𝐵𝑉𝐴𝑊) → (𝐵t 𝐴) = ran (𝑥𝐵 ↦ (𝑥𝐴)))
87sseq2d 3963 . . . . . . . . . . 11 ((𝐵𝑉𝐴𝑊) → (𝑦 ⊆ (𝐵t 𝐴) ↔ 𝑦 ⊆ ran (𝑥𝐵 ↦ (𝑥𝐴))))
98biimpa 476 . . . . . . . . . 10 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝑦 ⊆ ran (𝑥𝐵 ↦ (𝑥𝐴)))
10 vex 3441 . . . . . . . . . . . . 13 𝑥 ∈ V
1110inex1 5257 . . . . . . . . . . . 12 (𝑥𝐴) ∈ V
1211rgenw 3052 . . . . . . . . . . 11 𝑥𝐵 (𝑥𝐴) ∈ V
13 eqid 2733 . . . . . . . . . . . 12 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
1413fnmpt 6626 . . . . . . . . . . 11 (∀𝑥𝐵 (𝑥𝐴) ∈ V → (𝑥𝐵 ↦ (𝑥𝐴)) Fn 𝐵)
15 fnima 6616 . . . . . . . . . . 11 ((𝑥𝐵 ↦ (𝑥𝐴)) Fn 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵) = ran (𝑥𝐵 ↦ (𝑥𝐴)))
1612, 14, 15mp2b 10 . . . . . . . . . 10 ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵) = ran (𝑥𝐵 ↦ (𝑥𝐴))
179, 16sseqtrrdi 3972 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝑦 ⊆ ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵))
18 ssimaexg 6914 . . . . . . . . 9 ((𝐵𝑉 ∧ Fun (𝑥𝐵 ↦ (𝑥𝐴)) ∧ 𝑦 ⊆ ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝐵)) → ∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)))
194, 6, 17, 18syl3anc 1373 . . . . . . . 8 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → ∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)))
20 df-ima 5632 . . . . . . . . . . . . . . . . 17 ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ran ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧)
21 resmpt 5990 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧) = (𝑥𝑧 ↦ (𝑥𝐴)))
2221adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧) = (𝑥𝑧 ↦ (𝑥𝐴)))
2322rneqd 5882 . . . . . . . . . . . . . . . . 17 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ran ((𝑥𝐵 ↦ (𝑥𝐴)) ↾ 𝑧) = ran (𝑥𝑧 ↦ (𝑥𝐴)))
2420, 23eqtrid 2780 . . . . . . . . . . . . . . . 16 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ran (𝑥𝑧 ↦ (𝑥𝐴)))
2524unieqd 4871 . . . . . . . . . . . . . . 15 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ran (𝑥𝑧 ↦ (𝑥𝐴)))
2611dfiun3 5913 . . . . . . . . . . . . . . 15 𝑥𝑧 (𝑥𝐴) = ran (𝑥𝑧 ↦ (𝑥𝐴))
2725, 26eqtr4di 2786 . . . . . . . . . . . . . 14 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = 𝑥𝑧 (𝑥𝐴))
28 iunin1 5022 . . . . . . . . . . . . . 14 𝑥𝑧 (𝑥𝐴) = ( 𝑥𝑧 𝑥𝐴)
2927, 28eqtrdi 2784 . . . . . . . . . . . . 13 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) = ( 𝑥𝑧 𝑥𝐴))
30 fvex 6841 . . . . . . . . . . . . . 14 (topGen‘𝐵) ∈ V
31 simpr 484 . . . . . . . . . . . . . 14 ((𝐵𝑉𝐴𝑊) → 𝐴𝑊)
32 uniiun 5009 . . . . . . . . . . . . . . . 16 𝑧 = 𝑥𝑧 𝑥
33 eltg3i 22877 . . . . . . . . . . . . . . . 16 ((𝐵𝑉𝑧𝐵) → 𝑧 ∈ (topGen‘𝐵))
3432, 33eqeltrrid 2838 . . . . . . . . . . . . . . 15 ((𝐵𝑉𝑧𝐵) → 𝑥𝑧 𝑥 ∈ (topGen‘𝐵))
3534adantlr 715 . . . . . . . . . . . . . 14 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → 𝑥𝑧 𝑥 ∈ (topGen‘𝐵))
36 elrestr 17334 . . . . . . . . . . . . . 14 (((topGen‘𝐵) ∈ V ∧ 𝐴𝑊 𝑥𝑧 𝑥 ∈ (topGen‘𝐵)) → ( 𝑥𝑧 𝑥𝐴) ∈ ((topGen‘𝐵) ↾t 𝐴))
3730, 31, 35, 36mp3an2ani 1470 . . . . . . . . . . . . 13 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ( 𝑥𝑧 𝑥𝐴) ∈ ((topGen‘𝐵) ↾t 𝐴))
3829, 37eqeltrd 2833 . . . . . . . . . . . 12 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) ∈ ((topGen‘𝐵) ↾t 𝐴))
39 unieq 4869 . . . . . . . . . . . . 13 (𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) → 𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧))
4039eleq1d 2818 . . . . . . . . . . . 12 (𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) → ( 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴) ↔ ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) ∈ ((topGen‘𝐵) ↾t 𝐴)))
4138, 40syl5ibrcom 247 . . . . . . . . . . 11 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → (𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4241expimpd 453 . . . . . . . . . 10 ((𝐵𝑉𝐴𝑊) → ((𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4342exlimdv 1934 . . . . . . . . 9 ((𝐵𝑉𝐴𝑊) → (∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4443adantr 480 . . . . . . . 8 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → (∃𝑧(𝑧𝐵𝑦 = ((𝑥𝐵 ↦ (𝑥𝐴)) “ 𝑧)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4519, 44mpd 15 . . . . . . 7 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴))
46 eleq1 2821 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴) ↔ 𝑦 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4745, 46syl5ibrcom 247 . . . . . 6 (((𝐵𝑉𝐴𝑊) ∧ 𝑦 ⊆ (𝐵t 𝐴)) → (𝑥 = 𝑦𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4847expimpd 453 . . . . 5 ((𝐵𝑉𝐴𝑊) → ((𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
4948exlimdv 1934 . . . 4 ((𝐵𝑉𝐴𝑊) → (∃𝑦(𝑦 ⊆ (𝐵t 𝐴) ∧ 𝑥 = 𝑦) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
503, 49biimtrid 242 . . 3 ((𝐵𝑉𝐴𝑊) → (𝑥 ∈ (topGen‘(𝐵t 𝐴)) → 𝑥 ∈ ((topGen‘𝐵) ↾t 𝐴)))
5150ssrdv 3936 . 2 ((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) ⊆ ((topGen‘𝐵) ↾t 𝐴))
52 restval 17332 . . . 4 (((topGen‘𝐵) ∈ V ∧ 𝐴𝑊) → ((topGen‘𝐵) ↾t 𝐴) = ran (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)))
5330, 31, 52sylancr 587 . . 3 ((𝐵𝑉𝐴𝑊) → ((topGen‘𝐵) ↾t 𝐴) = ran (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)))
54 eltg3 22878 . . . . . . . 8 (𝐵𝑉 → (𝑤 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑤 = 𝑧)))
5554adantr 480 . . . . . . 7 ((𝐵𝑉𝐴𝑊) → (𝑤 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑤 = 𝑧)))
5632ineq1i 4165 . . . . . . . . . . . 12 ( 𝑧𝐴) = ( 𝑥𝑧 𝑥𝐴)
5756, 28eqtr4i 2759 . . . . . . . . . . 11 ( 𝑧𝐴) = 𝑥𝑧 (𝑥𝐴)
58 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → 𝐵𝑉)
59 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → 𝐴𝑊)
60 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → 𝑧𝐵)
6160sselda 3930 . . . . . . . . . . . . . . . 16 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → 𝑥𝐵)
62 elrestr 17334 . . . . . . . . . . . . . . . 16 ((𝐵𝑉𝐴𝑊𝑥𝐵) → (𝑥𝐴) ∈ (𝐵t 𝐴))
6358, 59, 61, 62syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) ∧ 𝑥𝑧) → (𝑥𝐴) ∈ (𝐵t 𝐴))
6463fmpttd 7054 . . . . . . . . . . . . . 14 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → (𝑥𝑧 ↦ (𝑥𝐴)):𝑧⟶(𝐵t 𝐴))
6564frnd 6664 . . . . . . . . . . . . 13 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ran (𝑥𝑧 ↦ (𝑥𝐴)) ⊆ (𝐵t 𝐴))
66 eltg3i 22877 . . . . . . . . . . . . 13 (((𝐵t 𝐴) ∈ V ∧ ran (𝑥𝑧 ↦ (𝑥𝐴)) ⊆ (𝐵t 𝐴)) → ran (𝑥𝑧 ↦ (𝑥𝐴)) ∈ (topGen‘(𝐵t 𝐴)))
671, 65, 66sylancr 587 . . . . . . . . . . . 12 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ran (𝑥𝑧 ↦ (𝑥𝐴)) ∈ (topGen‘(𝐵t 𝐴)))
6826, 67eqeltrid 2837 . . . . . . . . . . 11 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → 𝑥𝑧 (𝑥𝐴) ∈ (topGen‘(𝐵t 𝐴)))
6957, 68eqeltrid 2837 . . . . . . . . . 10 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → ( 𝑧𝐴) ∈ (topGen‘(𝐵t 𝐴)))
70 ineq1 4162 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤𝐴) = ( 𝑧𝐴))
7170eleq1d 2818 . . . . . . . . . 10 (𝑤 = 𝑧 → ((𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴)) ↔ ( 𝑧𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7269, 71syl5ibrcom 247 . . . . . . . . 9 (((𝐵𝑉𝐴𝑊) ∧ 𝑧𝐵) → (𝑤 = 𝑧 → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7372expimpd 453 . . . . . . . 8 ((𝐵𝑉𝐴𝑊) → ((𝑧𝐵𝑤 = 𝑧) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7473exlimdv 1934 . . . . . . 7 ((𝐵𝑉𝐴𝑊) → (∃𝑧(𝑧𝐵𝑤 = 𝑧) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7555, 74sylbid 240 . . . . . 6 ((𝐵𝑉𝐴𝑊) → (𝑤 ∈ (topGen‘𝐵) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴))))
7675imp 406 . . . . 5 (((𝐵𝑉𝐴𝑊) ∧ 𝑤 ∈ (topGen‘𝐵)) → (𝑤𝐴) ∈ (topGen‘(𝐵t 𝐴)))
7776fmpttd 7054 . . . 4 ((𝐵𝑉𝐴𝑊) → (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)):(topGen‘𝐵)⟶(topGen‘(𝐵t 𝐴)))
7877frnd 6664 . . 3 ((𝐵𝑉𝐴𝑊) → ran (𝑤 ∈ (topGen‘𝐵) ↦ (𝑤𝐴)) ⊆ (topGen‘(𝐵t 𝐴)))
7953, 78eqsstrd 3965 . 2 ((𝐵𝑉𝐴𝑊) → ((topGen‘𝐵) ↾t 𝐴) ⊆ (topGen‘(𝐵t 𝐴)))
8051, 79eqssd 3948 1 ((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wral 3048  Vcvv 3437  cin 3897  wss 3898   cuni 4858   ciun 4941  cmpt 5174  ran crn 5620  cres 5621  cima 5622  Fun wfun 6480   Fn wfn 6481  cfv 6486  (class class class)co 7352  t crest 17326  topGenctg 17343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-rest 17328  df-topgen 17349
This theorem is referenced by:  resttop  23076  ordtrest2  23120  2ndcrest  23370  txrest  23547  xkoptsub  23570  xrtgioo  24723  ordtrest2NEW  33957  ptrest  37680
  Copyright terms: Public domain W3C validator