MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprm Structured version   Visualization version   GIF version

Theorem coprm 16640
Description: A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
coprm ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))

Proof of Theorem coprm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prmz 16604 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2 gcddvds 16432 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∥ 𝑃 ∧ (𝑃 gcd 𝑁) ∥ 𝑁))
31, 2sylan 580 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∥ 𝑃 ∧ (𝑃 gcd 𝑁) ∥ 𝑁))
43simprd 495 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∥ 𝑁)
5 breq1 5098 . . . . 5 ((𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) ∥ 𝑁𝑃𝑁))
64, 5syl5ibcom 245 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 𝑃𝑃𝑁))
76con3d 152 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 → ¬ (𝑃 gcd 𝑁) = 𝑃))
8 0nnn 12182 . . . . . . . . 9 ¬ 0 ∈ ℕ
9 prmnn 16603 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
10 eleq1 2816 . . . . . . . . . 10 (𝑃 = 0 → (𝑃 ∈ ℕ ↔ 0 ∈ ℕ))
119, 10syl5ibcom 245 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 = 0 → 0 ∈ ℕ))
128, 11mtoi 199 . . . . . . . 8 (𝑃 ∈ ℙ → ¬ 𝑃 = 0)
1312intnanrd 489 . . . . . . 7 (𝑃 ∈ ℙ → ¬ (𝑃 = 0 ∧ 𝑁 = 0))
1413adantr 480 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ¬ (𝑃 = 0 ∧ 𝑁 = 0))
15 gcdn0cl 16431 . . . . . . . 8 (((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑃 = 0 ∧ 𝑁 = 0)) → (𝑃 gcd 𝑁) ∈ ℕ)
1615ex 412 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → (𝑃 gcd 𝑁) ∈ ℕ))
171, 16sylan 580 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → (𝑃 gcd 𝑁) ∈ ℕ))
1814, 17mpd 15 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∈ ℕ)
193simpld 494 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∥ 𝑃)
20 isprm2 16611 . . . . . . . 8 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
2120simprbi 496 . . . . . . 7 (𝑃 ∈ ℙ → ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
22 breq1 5098 . . . . . . . . 9 (𝑧 = (𝑃 gcd 𝑁) → (𝑧𝑃 ↔ (𝑃 gcd 𝑁) ∥ 𝑃))
23 eqeq1 2733 . . . . . . . . . 10 (𝑧 = (𝑃 gcd 𝑁) → (𝑧 = 1 ↔ (𝑃 gcd 𝑁) = 1))
24 eqeq1 2733 . . . . . . . . . 10 (𝑧 = (𝑃 gcd 𝑁) → (𝑧 = 𝑃 ↔ (𝑃 gcd 𝑁) = 𝑃))
2523, 24orbi12d 918 . . . . . . . . 9 (𝑧 = (𝑃 gcd 𝑁) → ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))
2622, 25imbi12d 344 . . . . . . . 8 (𝑧 = (𝑃 gcd 𝑁) → ((𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2726rspcv 3575 . . . . . . 7 ((𝑃 gcd 𝑁) ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2821, 27syl5com 31 . . . . . 6 (𝑃 ∈ ℙ → ((𝑃 gcd 𝑁) ∈ ℕ → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2928adantr 480 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∈ ℕ → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
3018, 19, 29mp2d 49 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))
31 biorf 936 . . . . 5 (¬ (𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) = 1 ↔ ((𝑃 gcd 𝑁) = 𝑃 ∨ (𝑃 gcd 𝑁) = 1)))
32 orcom 870 . . . . 5 (((𝑃 gcd 𝑁) = 𝑃 ∨ (𝑃 gcd 𝑁) = 1) ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))
3331, 32bitrdi 287 . . . 4 (¬ (𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) = 1 ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))
3430, 33syl5ibrcom 247 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 gcd 𝑁) = 𝑃 → (𝑃 gcd 𝑁) = 1))
357, 34syld 47 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 → (𝑃 gcd 𝑁) = 1))
36 iddvds 16198 . . . . . . 7 (𝑃 ∈ ℤ → 𝑃𝑃)
371, 36syl 17 . . . . . 6 (𝑃 ∈ ℙ → 𝑃𝑃)
3837adantr 480 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 𝑃𝑃)
39 dvdslegcd 16433 . . . . . . . . 9 (((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑃 = 0 ∧ 𝑁 = 0)) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))
4039ex 412 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
41403anidm12 1421 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
421, 41sylan 580 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
4314, 42mpd 15 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))
4438, 43mpand 695 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃𝑁𝑃 ≤ (𝑃 gcd 𝑁)))
45 prmgt1 16626 . . . . . 6 (𝑃 ∈ ℙ → 1 < 𝑃)
4645adantr 480 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 1 < 𝑃)
47 1re 11134 . . . . . 6 1 ∈ ℝ
481zred 12598 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
4918nnred 12161 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∈ ℝ)
50 ltletr 11226 . . . . . 6 ((1 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑃 gcd 𝑁) ∈ ℝ) → ((1 < 𝑃𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁)))
5147, 48, 49, 50mp3an2ani 1470 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((1 < 𝑃𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁)))
5246, 51mpand 695 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 ≤ (𝑃 gcd 𝑁) → 1 < (𝑃 gcd 𝑁)))
53 ltne 11231 . . . . . 6 ((1 ∈ ℝ ∧ 1 < (𝑃 gcd 𝑁)) → (𝑃 gcd 𝑁) ≠ 1)
5447, 53mpan 690 . . . . 5 (1 < (𝑃 gcd 𝑁) → (𝑃 gcd 𝑁) ≠ 1)
5554a1i 11 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (1 < (𝑃 gcd 𝑁) → (𝑃 gcd 𝑁) ≠ 1))
5644, 52, 553syld 60 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 → (𝑃 gcd 𝑁) ≠ 1))
5756necon2bd 2941 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 1 → ¬ 𝑃𝑁))
5835, 57impbid 212 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   < clt 11168  cle 11169  cn 12146  2c2 12201  cz 12489  cuz 12753  cdvds 16181   gcd cgcd 16423  cprime 16600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-prm 16601
This theorem is referenced by:  prmrp  16641  euclemma  16642  cncongrprm  16658  isoddgcd1  16660  phiprmpw  16705  fermltl  16713  prmdiv  16714  prmdiveq  16715  vfermltl  16731  prmpwdvds  16834  1259lem5  17064  2503lem3  17068  4001lem4  17073  gexexlem  19749  ablfac1lem  19967  ablfac1eu  19972  pgpfac1lem3  19976  perfect1  27155  perfectlem1  27156  perfectlem2  27157  lgslem1  27224  lgsprme0  27266  lgsqrlem2  27274  lgsqr  27278  gausslemma2dlem0c  27285  lgsquad2lem2  27312  2sqblem  27358  rpvmasumlem  27414  dchrisum0flblem2  27436  nn0prpwlem  36298  aks4d1p8d1  42060  aks4d1p8d2  42061  aks4d1p8d3  42062  aks6d1c6lem4  42149  isodd7  47653  gcd2odd1  47656
  Copyright terms: Public domain W3C validator