Step | Hyp | Ref
| Expression |
1 | | fveq2 6768 |
. . . . . 6
⊢ (𝑥 = 0 → ((ℝ
D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘0)) |
2 | 1 | dmeqd 5811 |
. . . . . 6
⊢ (𝑥 = 0 → dom ((ℝ
D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘0)) |
3 | 1, 2 | feq12d 6584 |
. . . . 5
⊢ (𝑥 = 0 → (((ℝ
D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ
D𝑛 𝐹)‘0):dom ((ℝ
D𝑛 𝐹)‘0)⟶ℝ)) |
4 | 3 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 0 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ
D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ
D𝑛 𝐹)‘0):dom ((ℝ
D𝑛 𝐹)‘0)⟶ℝ))) |
5 | | fveq2 6768 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘𝑛)) |
6 | 5 | dmeqd 5811 |
. . . . . 6
⊢ (𝑥 = 𝑛 → dom ((ℝ D𝑛
𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘𝑛)) |
7 | 5, 6 | feq12d 6584 |
. . . . 5
⊢ (𝑥 = 𝑛 → (((ℝ D𝑛
𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) |
8 | 7 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑛 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ
D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ))) |
9 | | fveq2 6768 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((ℝ D𝑛
𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘(𝑛 + 1))) |
10 | 9 | dmeqd 5811 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → dom ((ℝ
D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))) |
11 | 9, 10 | feq12d 6584 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → (((ℝ D𝑛
𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ
D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛
𝐹)‘(𝑛 +
1))⟶ℝ)) |
12 | 11 | imbi2d 340 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ
D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ
D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛
𝐹)‘(𝑛 +
1))⟶ℝ))) |
13 | | fveq2 6768 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((ℝ D𝑛
𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘𝑁)) |
14 | 13 | dmeqd 5811 |
. . . . . 6
⊢ (𝑥 = 𝑁 → dom ((ℝ D𝑛
𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘𝑁)) |
15 | 13, 14 | feq12d 6584 |
. . . . 5
⊢ (𝑥 = 𝑁 → (((ℝ D𝑛
𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ
D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)) |
16 | 15 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑁 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ
D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ
D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ))) |
17 | | simpl 482 |
. . . . 5
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹:𝐴⟶ℝ) |
18 | | ax-resscn 10912 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
19 | | fss 6613 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:𝐴⟶ℂ) |
20 | 18, 19 | mpan2 687 |
. . . . . . . 8
⊢ (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ) |
21 | | cnex 10936 |
. . . . . . . . 9
⊢ ℂ
∈ V |
22 | | reex 10946 |
. . . . . . . . 9
⊢ ℝ
∈ V |
23 | | elpm2r 8607 |
. . . . . . . . 9
⊢
(((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
24 | 21, 22, 23 | mpanl12 698 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
25 | 20, 24 | sylan 579 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
26 | | dvn0 25069 |
. . . . . . 7
⊢ ((ℝ
⊆ ℂ ∧ 𝐹
∈ (ℂ ↑pm ℝ)) → ((ℝ
D𝑛 𝐹)‘0) = 𝐹) |
27 | 18, 25, 26 | sylancr 586 |
. . . . . 6
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ
D𝑛 𝐹)‘0) = 𝐹) |
28 | 27 | dmeqd 5811 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom ((ℝ
D𝑛 𝐹)‘0) = dom 𝐹) |
29 | | fdm 6605 |
. . . . . . . 8
⊢ (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴) |
30 | 29 | adantr 480 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom 𝐹 = 𝐴) |
31 | 28, 30 | eqtrd 2779 |
. . . . . 6
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom ((ℝ
D𝑛 𝐹)‘0) = 𝐴) |
32 | 27, 31 | feq12d 6584 |
. . . . 5
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (((ℝ
D𝑛 𝐹)‘0):dom ((ℝ
D𝑛 𝐹)‘0)⟶ℝ ↔ 𝐹:𝐴⟶ℝ)) |
33 | 17, 32 | mpbird 256 |
. . . 4
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ
D𝑛 𝐹)‘0):dom ((ℝ
D𝑛 𝐹)‘0)⟶ℝ) |
34 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ) |
35 | 22 | prid1 4703 |
. . . . . . . . . . . 12
⊢ ℝ
∈ {ℝ, ℂ} |
36 | | simprl 767 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → 𝑛 ∈ ℕ0) |
37 | | dvnbss 25073 |
. . . . . . . . . . . 12
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ 𝑛 ∈
ℕ0) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹) |
38 | 35, 25, 36, 37 | mp3an2ani 1466 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ
D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹) |
39 | 30 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom 𝐹 = 𝐴) |
40 | 38, 39 | sseqtrd 3965 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ
D𝑛 𝐹)‘𝑛) ⊆ 𝐴) |
41 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → 𝐴 ⊆ ℝ) |
42 | 40, 41 | sstrd 3935 |
. . . . . . . . 9
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ
D𝑛 𝐹)‘𝑛) ⊆ ℝ) |
43 | | dvfre 25096 |
. . . . . . . . 9
⊢
((((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ ∧ dom ((ℝ
D𝑛 𝐹)‘𝑛) ⊆ ℝ) → (ℝ D
((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ
D𝑛 𝐹)‘𝑛))⟶ℝ) |
44 | 34, 42, 43 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → (ℝ D
((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ
D𝑛 𝐹)‘𝑛))⟶ℝ) |
45 | | dvnp1 25070 |
. . . . . . . . . 10
⊢ ((ℝ
⊆ ℂ ∧ 𝐹
∈ (ℂ ↑pm ℝ) ∧ 𝑛 ∈ ℕ0) → ((ℝ
D𝑛 𝐹)‘(𝑛 + 1)) = (ℝ D ((ℝ
D𝑛 𝐹)‘𝑛))) |
46 | 18, 25, 36, 45 | mp3an2ani 1466 |
. . . . . . . . 9
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ
D𝑛 𝐹)‘(𝑛 + 1)) = (ℝ D ((ℝ
D𝑛 𝐹)‘𝑛))) |
47 | 46 | dmeqd 5811 |
. . . . . . . . 9
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ
D𝑛 𝐹)‘(𝑛 + 1)) = dom (ℝ D ((ℝ
D𝑛 𝐹)‘𝑛))) |
48 | 46, 47 | feq12d 6584 |
. . . . . . . 8
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → (((ℝ
D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛
𝐹)‘(𝑛 + 1))⟶ℝ ↔
(ℝ D ((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ
D𝑛 𝐹)‘𝑛))⟶ℝ)) |
49 | 44, 48 | mpbird 256 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ
D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ
D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛
𝐹)‘(𝑛 +
1))⟶ℝ) |
50 | 49 | expr 456 |
. . . . . 6
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑛 ∈ ℕ0) →
(((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ → ((ℝ
D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛
𝐹)‘(𝑛 +
1))⟶ℝ)) |
51 | 50 | expcom 413 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) →
(((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ → ((ℝ
D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛
𝐹)‘(𝑛 +
1))⟶ℝ))) |
52 | 51 | a2d 29 |
. . . 4
⊢ (𝑛 ∈ ℕ0
→ (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) →
((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ) → ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ
D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛
𝐹)‘(𝑛 +
1))⟶ℝ))) |
53 | 4, 8, 12, 16, 33, 52 | nn0ind 12398 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) →
((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)) |
54 | 53 | com12 32 |
. 2
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝑁 ∈ ℕ0 → ((ℝ
D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)) |
55 | 54 | 3impia 1115 |
1
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ) |