MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnfre Structured version   Visualization version   GIF version

Theorem dvnfre 24555
Description: The 𝑁-th derivative of a real function is real. (Contributed by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
dvnfre ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)

Proof of Theorem dvnfre
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . . . 6 (𝑥 = 0 → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘0))
21dmeqd 5738 . . . . . 6 (𝑥 = 0 → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘0))
31, 2feq12d 6475 . . . . 5 (𝑥 = 0 → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ))
43imbi2d 344 . . . 4 (𝑥 = 0 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ)))
5 fveq2 6645 . . . . . 6 (𝑥 = 𝑛 → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘𝑛))
65dmeqd 5738 . . . . . 6 (𝑥 = 𝑛 → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘𝑛))
75, 6feq12d 6475 . . . . 5 (𝑥 = 𝑛 → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ))
87imbi2d 344 . . . 4 (𝑥 = 𝑛 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)))
9 fveq2 6645 . . . . . 6 (𝑥 = (𝑛 + 1) → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘(𝑛 + 1)))
109dmeqd 5738 . . . . . 6 (𝑥 = (𝑛 + 1) → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1)))
119, 10feq12d 6475 . . . . 5 (𝑥 = (𝑛 + 1) → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ))
1211imbi2d 344 . . . 4 (𝑥 = (𝑛 + 1) → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)))
13 fveq2 6645 . . . . . 6 (𝑥 = 𝑁 → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘𝑁))
1413dmeqd 5738 . . . . . 6 (𝑥 = 𝑁 → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘𝑁))
1513, 14feq12d 6475 . . . . 5 (𝑥 = 𝑁 → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ))
1615imbi2d 344 . . . 4 (𝑥 = 𝑁 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)))
17 simpl 486 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹:𝐴⟶ℝ)
18 ax-resscn 10583 . . . . . . 7 ℝ ⊆ ℂ
19 fss 6501 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
2018, 19mpan2 690 . . . . . . . 8 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ)
21 cnex 10607 . . . . . . . . 9 ℂ ∈ V
22 reex 10617 . . . . . . . . 9 ℝ ∈ V
23 elpm2r 8407 . . . . . . . . 9 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
2421, 22, 23mpanl12 701 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
2520, 24sylan 583 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
26 dvn0 24527 . . . . . . 7 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ)) → ((ℝ D𝑛 𝐹)‘0) = 𝐹)
2718, 25, 26sylancr 590 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘0) = 𝐹)
2827dmeqd 5738 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom ((ℝ D𝑛 𝐹)‘0) = dom 𝐹)
29 fdm 6495 . . . . . . . 8 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
3029adantr 484 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom 𝐹 = 𝐴)
3128, 30eqtrd 2833 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom ((ℝ D𝑛 𝐹)‘0) = 𝐴)
3227, 31feq12d 6475 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ ↔ 𝐹:𝐴⟶ℝ))
3317, 32mpbird 260 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ)
34 simprr 772 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)
3522prid1 4658 . . . . . . . . . . . 12 ℝ ∈ {ℝ, ℂ}
36 simprl 770 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → 𝑛 ∈ ℕ0)
37 dvnbss 24531 . . . . . . . . . . . 12 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝑛 ∈ ℕ0) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
3835, 25, 36, 37mp3an2ani 1465 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
3930adantr 484 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom 𝐹 = 𝐴)
4038, 39sseqtrd 3955 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ 𝐴)
41 simplr 768 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → 𝐴 ⊆ ℝ)
4240, 41sstrd 3925 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ ℝ)
43 dvfre 24554 . . . . . . . . 9 ((((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ ∧ dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ ℝ) → (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛))⟶ℝ)
4434, 42, 43syl2anc 587 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛))⟶ℝ)
45 dvnp1 24528 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝑛 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)))
4618, 25, 36, 45mp3an2ani 1465 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)))
4746dmeqd 5738 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1)) = dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)))
4846, 47feq12d 6475 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → (((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ ↔ (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛))⟶ℝ))
4944, 48mpbird 260 . . . . . . 7 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)
5049expr 460 . . . . . 6 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑛 ∈ ℕ0) → (((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ))
5150expcom 417 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)))
5251a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ) → ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)))
534, 8, 12, 16, 33, 52nn0ind 12065 . . 3 (𝑁 ∈ ℕ0 → ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ))
5453com12 32 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝑁 ∈ ℕ0 → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ))
55543impia 1114 1 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  {cpr 4527  dom cdm 5519  wf 6320  cfv 6324  (class class class)co 7135  pm cpm 8390  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  0cn0 11885   D cdv 24466   D𝑛 cdvn 24467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-cncf 23483  df-limc 24469  df-dv 24470  df-dvn 24471
This theorem is referenced by:  taylthlem2  24969
  Copyright terms: Public domain W3C validator