MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnfre Structured version   Visualization version   GIF version

Theorem dvnfre 25161
Description: The 𝑁-th derivative of a real function is real. (Contributed by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
dvnfre ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)

Proof of Theorem dvnfre
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6804 . . . . . 6 (𝑥 = 0 → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘0))
21dmeqd 5827 . . . . . 6 (𝑥 = 0 → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘0))
31, 2feq12d 6618 . . . . 5 (𝑥 = 0 → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ))
43imbi2d 341 . . . 4 (𝑥 = 0 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ)))
5 fveq2 6804 . . . . . 6 (𝑥 = 𝑛 → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘𝑛))
65dmeqd 5827 . . . . . 6 (𝑥 = 𝑛 → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘𝑛))
75, 6feq12d 6618 . . . . 5 (𝑥 = 𝑛 → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ))
87imbi2d 341 . . . 4 (𝑥 = 𝑛 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)))
9 fveq2 6804 . . . . . 6 (𝑥 = (𝑛 + 1) → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘(𝑛 + 1)))
109dmeqd 5827 . . . . . 6 (𝑥 = (𝑛 + 1) → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1)))
119, 10feq12d 6618 . . . . 5 (𝑥 = (𝑛 + 1) → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ))
1211imbi2d 341 . . . 4 (𝑥 = (𝑛 + 1) → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)))
13 fveq2 6804 . . . . . 6 (𝑥 = 𝑁 → ((ℝ D𝑛 𝐹)‘𝑥) = ((ℝ D𝑛 𝐹)‘𝑁))
1413dmeqd 5827 . . . . . 6 (𝑥 = 𝑁 → dom ((ℝ D𝑛 𝐹)‘𝑥) = dom ((ℝ D𝑛 𝐹)‘𝑁))
1513, 14feq12d 6618 . . . . 5 (𝑥 = 𝑁 → (((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ ↔ ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ))
1615imbi2d 341 . . . 4 (𝑥 = 𝑁 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑥):dom ((ℝ D𝑛 𝐹)‘𝑥)⟶ℝ) ↔ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)))
17 simpl 484 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹:𝐴⟶ℝ)
18 ax-resscn 10974 . . . . . . 7 ℝ ⊆ ℂ
19 fss 6647 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
2018, 19mpan2 689 . . . . . . . 8 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ)
21 cnex 10998 . . . . . . . . 9 ℂ ∈ V
22 reex 11008 . . . . . . . . 9 ℝ ∈ V
23 elpm2r 8664 . . . . . . . . 9 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
2421, 22, 23mpanl12 700 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
2520, 24sylan 581 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
26 dvn0 25133 . . . . . . 7 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ)) → ((ℝ D𝑛 𝐹)‘0) = 𝐹)
2718, 25, 26sylancr 588 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘0) = 𝐹)
2827dmeqd 5827 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom ((ℝ D𝑛 𝐹)‘0) = dom 𝐹)
29 fdm 6639 . . . . . . . 8 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
3029adantr 482 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom 𝐹 = 𝐴)
3128, 30eqtrd 2776 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → dom ((ℝ D𝑛 𝐹)‘0) = 𝐴)
3227, 31feq12d 6618 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ ↔ 𝐹:𝐴⟶ℝ))
3317, 32mpbird 257 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘0):dom ((ℝ D𝑛 𝐹)‘0)⟶ℝ)
34 simprr 771 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)
3522prid1 4702 . . . . . . . . . . . 12 ℝ ∈ {ℝ, ℂ}
36 simprl 769 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → 𝑛 ∈ ℕ0)
37 dvnbss 25137 . . . . . . . . . . . 12 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝑛 ∈ ℕ0) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
3835, 25, 36, 37mp3an2ani 1468 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
3930adantr 482 . . . . . . . . . . 11 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom 𝐹 = 𝐴)
4038, 39sseqtrd 3966 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ 𝐴)
41 simplr 767 . . . . . . . . . 10 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → 𝐴 ⊆ ℝ)
4240, 41sstrd 3936 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ ℝ)
43 dvfre 25160 . . . . . . . . 9 ((((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ ∧ dom ((ℝ D𝑛 𝐹)‘𝑛) ⊆ ℝ) → (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛))⟶ℝ)
4434, 42, 43syl2anc 585 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛))⟶ℝ)
45 dvnp1 25134 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝑛 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)))
4618, 25, 36, 45mp3an2ani 1468 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)))
4746dmeqd 5827 . . . . . . . . 9 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1)) = dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)))
4846, 47feq12d 6618 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → (((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ ↔ (ℝ D ((ℝ D𝑛 𝐹)‘𝑛)):dom (ℝ D ((ℝ D𝑛 𝐹)‘𝑛))⟶ℝ))
4944, 48mpbird 257 . . . . . . 7 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℕ0 ∧ ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ)) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)
5049expr 458 . . . . . 6 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ 𝑛 ∈ ℕ0) → (((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ))
5150expcom 415 . . . . 5 (𝑛 ∈ ℕ0 → ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)))
5251a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑛):dom ((ℝ D𝑛 𝐹)‘𝑛)⟶ℝ) → ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘(𝑛 + 1)):dom ((ℝ D𝑛 𝐹)‘(𝑛 + 1))⟶ℝ)))
534, 8, 12, 16, 33, 52nn0ind 12461 . . 3 (𝑁 ∈ ℕ0 → ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ))
5453com12 32 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝑁 ∈ ℕ0 → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ))
55543impia 1117 1 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  Vcvv 3437  wss 3892  {cpr 4567  dom cdm 5600  wf 6454  cfv 6458  (class class class)co 7307  pm cpm 8647  cc 10915  cr 10916  0cc0 10917  1c1 10918   + caddc 10920  0cn0 12279   D cdv 25072   D𝑛 cdvn 25073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fi 9214  df-sup 9245  df-inf 9246  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-dec 12484  df-uz 12629  df-q 12735  df-rp 12777  df-xneg 12894  df-xadd 12895  df-xmul 12896  df-ioo 13129  df-icc 13132  df-fz 13286  df-seq 13768  df-exp 13829  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-struct 16893  df-slot 16928  df-ndx 16940  df-base 16958  df-plusg 17020  df-mulr 17021  df-starv 17022  df-tset 17026  df-ple 17027  df-ds 17029  df-unif 17030  df-rest 17178  df-topn 17179  df-topgen 17199  df-psmet 20634  df-xmet 20635  df-met 20636  df-bl 20637  df-mopn 20638  df-fbas 20639  df-fg 20640  df-cnfld 20643  df-top 22088  df-topon 22105  df-topsp 22127  df-bases 22141  df-cld 22215  df-ntr 22216  df-cls 22217  df-nei 22294  df-lp 22332  df-perf 22333  df-cn 22423  df-cnp 22424  df-haus 22511  df-fil 23042  df-fm 23134  df-flim 23135  df-flf 23136  df-xms 23518  df-ms 23519  df-cncf 24086  df-limc 25075  df-dv 25076  df-dvn 25077
This theorem is referenced by:  taylthlem2  25578
  Copyright terms: Public domain W3C validator