| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 2cnd 12345 | . . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 2 ∈
ℂ) | 
| 2 |  | nnnn0 12535 | . . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) | 
| 3 | 1, 2 | expcld 14187 | . . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(2↑𝑁) ∈
ℂ) | 
| 4 | 3 | 3ad2ant3 1135 | . . . . . . . 8
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (2↑𝑁) ∈
ℂ) | 
| 5 |  | 1cnd 11257 | . . . . . . . 8
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 1 ∈ ℂ) | 
| 6 |  | eldifi 4130 | . . . . . . . . . . 11
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℙ) | 
| 7 |  | prmnn 16712 | . . . . . . . . . . 11
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) | 
| 8 |  | nncn 12275 | . . . . . . . . . . 11
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℂ) | 
| 9 | 6, 7, 8 | 3syl 18 | . . . . . . . . . 10
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℂ) | 
| 10 | 9 | 3ad2ant1 1133 | . . . . . . . . 9
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑃 ∈
ℂ) | 
| 11 |  | nnnn0 12535 | . . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) | 
| 12 | 11 | 3ad2ant2 1134 | . . . . . . . . 9
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑀 ∈
ℕ0) | 
| 13 | 10, 12 | expcld 14187 | . . . . . . . 8
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑃↑𝑀) ∈
ℂ) | 
| 14 | 4, 5, 13 | 3jca 1128 | . . . . . . 7
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((2↑𝑁) ∈
ℂ ∧ 1 ∈ ℂ ∧ (𝑃↑𝑀) ∈ ℂ)) | 
| 15 | 14 | adantr 480 | . . . . . 6
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ ((2↑𝑁) ∈
ℂ ∧ 1 ∈ ℂ ∧ (𝑃↑𝑀) ∈ ℂ)) | 
| 16 |  | subadd2 11513 | . . . . . 6
⊢
(((2↑𝑁) ∈
ℂ ∧ 1 ∈ ℂ ∧ (𝑃↑𝑀) ∈ ℂ) → (((2↑𝑁) − 1) = (𝑃↑𝑀) ↔ ((𝑃↑𝑀) + 1) = (2↑𝑁))) | 
| 17 | 15, 16 | syl 17 | . . . . 5
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ (((2↑𝑁) −
1) = (𝑃↑𝑀) ↔ ((𝑃↑𝑀) + 1) = (2↑𝑁))) | 
| 18 | 10 | adantr 480 | . . . . . . . 8
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ 𝑃 ∈
ℂ) | 
| 19 |  | simpl2 1192 | . . . . . . . 8
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ 𝑀 ∈
ℕ) | 
| 20 |  | simpr 484 | . . . . . . . 8
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ ¬ 2 ∥ 𝑀) | 
| 21 | 18, 19, 20 | oddpwp1fsum 16430 | . . . . . . 7
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ ((𝑃↑𝑀) + 1) = ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)))) | 
| 22 | 21 | eqeq1d 2738 | . . . . . 6
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ (((𝑃↑𝑀) + 1) = (2↑𝑁) ↔ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁))) | 
| 23 |  | peano2nn 12279 | . . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℕ → (𝑃 + 1) ∈
ℕ) | 
| 24 | 23 | nnzd 12642 | . . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℕ → (𝑃 + 1) ∈
ℤ) | 
| 25 | 6, 7, 24 | 3syl 18 | . . . . . . . . . . . 12
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 + 1) ∈
ℤ) | 
| 26 | 25 | 3ad2ant1 1133 | . . . . . . . . . . 11
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑃 + 1) ∈
ℤ) | 
| 27 |  | fzfid 14015 | . . . . . . . . . . . 12
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (0...(𝑀 − 1))
∈ Fin) | 
| 28 |  | neg1z 12655 | . . . . . . . . . . . . . . 15
⊢ -1 ∈
ℤ | 
| 29 | 28 | a1i 11 | . . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ -1 ∈ ℤ) | 
| 30 |  | elfznn0 13661 | . . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...(𝑀 − 1)) → 𝑘 ∈ ℕ0) | 
| 31 |  | zexpcl 14118 | . . . . . . . . . . . . . 14
⊢ ((-1
∈ ℤ ∧ 𝑘
∈ ℕ0) → (-1↑𝑘) ∈ ℤ) | 
| 32 | 29, 30, 31 | syl2an 596 | . . . . . . . . . . . . 13
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ 𝑘 ∈ (0...(𝑀 − 1))) →
(-1↑𝑘) ∈
ℤ) | 
| 33 |  | nnz 12636 | . . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℤ) | 
| 34 | 6, 7, 33 | 3syl 18 | . . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℤ) | 
| 35 | 34 | 3ad2ant1 1133 | . . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑃 ∈
ℤ) | 
| 36 |  | zexpcl 14118 | . . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℤ ∧ 𝑘 ∈ ℕ0)
→ (𝑃↑𝑘) ∈
ℤ) | 
| 37 | 35, 30, 36 | syl2an 596 | . . . . . . . . . . . . 13
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝑃↑𝑘) ∈ ℤ) | 
| 38 | 32, 37 | zmulcld 12730 | . . . . . . . . . . . 12
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ 𝑘 ∈ (0...(𝑀 − 1))) →
((-1↑𝑘) ·
(𝑃↑𝑘)) ∈ ℤ) | 
| 39 | 27, 38 | fsumzcl 15772 | . . . . . . . . . . 11
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∈ ℤ) | 
| 40 | 26, 39 | jca 511 | . . . . . . . . . 10
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝑃 + 1) ∈
ℤ ∧ Σ𝑘
∈ (0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∈ ℤ)) | 
| 41 | 40 | ad2antrr 726 | . . . . . . . . 9
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
∧ ((𝑃 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁)) → ((𝑃 + 1) ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∈ ℤ)) | 
| 42 |  | dvdsmul2 16317 | . . . . . . . . 9
⊢ (((𝑃 + 1) ∈ ℤ ∧
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∈ ℤ) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)))) | 
| 43 | 41, 42 | syl 17 | . . . . . . . 8
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
∧ ((𝑃 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁)) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)))) | 
| 44 |  | breq2 5146 | . . . . . . . . . 10
⊢ (((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) ↔ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ (2↑𝑁))) | 
| 45 | 44 | adantl 481 | . . . . . . . . 9
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
∧ ((𝑃 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) ↔ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ (2↑𝑁))) | 
| 46 |  | 2a1 28 | . . . . . . . . . . 11
⊢ (𝑀 = 1 → (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2
∥ 𝑀) →
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))) | 
| 47 |  | 2prm 16730 | . . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℙ | 
| 48 |  | prmuz2 16734 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) | 
| 49 | 6, 48 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
(ℤ≥‘2)) | 
| 50 | 49 | 3ad2ant1 1133 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑃 ∈
(ℤ≥‘2)) | 
| 51 | 50 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
𝑃 ∈
(ℤ≥‘2)) | 
| 52 |  | df-ne 2940 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 ≠ 1 ↔ ¬ 𝑀 = 1) | 
| 53 |  | eluz2b3 12965 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑀 ∈
(ℤ≥‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) | 
| 54 | 53 | simplbi2 500 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 ∈ ℕ → (𝑀 ≠ 1 → 𝑀 ∈
(ℤ≥‘2))) | 
| 55 | 52, 54 | biimtrrid 243 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈ ℕ → (¬
𝑀 = 1 → 𝑀 ∈
(ℤ≥‘2))) | 
| 56 | 55 | 3ad2ant2 1134 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (¬ 𝑀 = 1 →
𝑀 ∈
(ℤ≥‘2))) | 
| 57 | 56 | com12 32 | . . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑀 = 1 → ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑀 ∈
(ℤ≥‘2))) | 
| 58 | 57 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((¬
𝑀 = 1 ∧ ¬ 2 ∥
𝑀) → ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑀 ∈
(ℤ≥‘2))) | 
| 59 | 58 | impcom 407 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
𝑀 ∈
(ℤ≥‘2)) | 
| 60 |  | simprr 772 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
¬ 2 ∥ 𝑀) | 
| 61 |  | lighneallem4b 47601 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∈
(ℤ≥‘2)) | 
| 62 | 51, 59, 60, 61 | syl3anc 1372 | . . . . . . . . . . . . . . . 16
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∈
(ℤ≥‘2)) | 
| 63 | 2 | 3ad2ant3 1135 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑁 ∈
ℕ0) | 
| 64 | 63 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
𝑁 ∈
ℕ0) | 
| 65 |  | dvdsprmpweqnn 16924 | . . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℙ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∈ (ℤ≥‘2)
∧ 𝑁 ∈
ℕ0) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ (2↑𝑁) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) = (2↑𝑛))) | 
| 66 | 47, 62, 64, 65 | mp3an2i 1467 | . . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∥ (2↑𝑁) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) = (2↑𝑛))) | 
| 67 |  | 2z 12651 | . . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℤ | 
| 68 | 67 | a1i 11 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
2 ∈ ℤ) | 
| 69 |  | iddvdsexp 16318 | . . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℤ ∧ 𝑛
∈ ℕ) → 2 ∥ (2↑𝑛)) | 
| 70 | 68, 69 | sylan 580 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) → 2
∥ (2↑𝑛)) | 
| 71 |  | breq2 5146 | . . . . . . . . . . . . . . . . . . . 20
⊢
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) = (2↑𝑛) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ↔ 2 ∥ (2↑𝑛))) | 
| 72 | 71 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑃 ∈
(ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) = (2↑𝑛)) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ↔ 2 ∥ (2↑𝑛))) | 
| 73 |  | fzfid 14015 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) →
(0...(𝑀 − 1)) ∈
Fin) | 
| 74 | 28 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑃 ∈ ℕ → -1 ∈
ℤ) | 
| 75 | 74, 31 | sylan 580 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ (-1↑𝑘) ∈
ℤ) | 
| 76 |  | nnnn0 12535 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℕ0) | 
| 77 | 76 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ 𝑃 ∈
ℕ0) | 
| 78 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ 𝑘 ∈
ℕ0) | 
| 79 | 77, 78 | nn0expcld 14286 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ (𝑃↑𝑘) ∈
ℕ0) | 
| 80 | 79 | nn0zd 12641 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ (𝑃↑𝑘) ∈
ℤ) | 
| 81 | 75, 80 | zmulcld 12730 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ ((-1↑𝑘)
· (𝑃↑𝑘)) ∈
ℤ) | 
| 82 | 81 | ex 412 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑃 ∈ ℕ → (𝑘 ∈ ℕ0
→ ((-1↑𝑘)
· (𝑃↑𝑘)) ∈
ℤ)) | 
| 83 | 6, 7, 82 | 3syl 18 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑘 ∈
ℕ0 → ((-1↑𝑘) · (𝑃↑𝑘)) ∈ ℤ)) | 
| 84 | 83 | 3ad2ant1 1133 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑘 ∈
ℕ0 → ((-1↑𝑘) · (𝑃↑𝑘)) ∈ ℤ)) | 
| 85 | 84 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) →
(𝑘 ∈
ℕ0 → ((-1↑𝑘) · (𝑃↑𝑘)) ∈ ℤ)) | 
| 86 | 85, 30 | impel 505 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑃 ∈
(ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ((-1↑𝑘) · (𝑃↑𝑘)) ∈ ℤ) | 
| 87 |  | nn0z 12640 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) | 
| 88 |  | m1expcl2 14127 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 ∈ ℤ →
(-1↑𝑘) ∈ {-1,
1}) | 
| 89 | 87, 88 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 ∈ ℕ0
→ (-1↑𝑘) ∈
{-1, 1}) | 
| 90 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(-1↑𝑘) ∈
V | 
| 91 | 90 | elpr 4649 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((-1↑𝑘) ∈
{-1, 1} ↔ ((-1↑𝑘)
= -1 ∨ (-1↑𝑘) =
1)) | 
| 92 |  | n2dvdsm1 16407 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢  ¬ 2
∥ -1 | 
| 93 |  | breq2 5146 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((-1↑𝑘) = -1
→ (2 ∥ (-1↑𝑘) ↔ 2 ∥ -1)) | 
| 94 | 92, 93 | mtbiri 327 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((-1↑𝑘) = -1
→ ¬ 2 ∥ (-1↑𝑘)) | 
| 95 |  | n2dvds1 16406 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢  ¬ 2
∥ 1 | 
| 96 |  | breq2 5146 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((-1↑𝑘) = 1
→ (2 ∥ (-1↑𝑘) ↔ 2 ∥ 1)) | 
| 97 | 95, 96 | mtbiri 327 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((-1↑𝑘) = 1
→ ¬ 2 ∥ (-1↑𝑘)) | 
| 98 | 94, 97 | jaoi 857 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((-1↑𝑘) = -1
∨ (-1↑𝑘) = 1)
→ ¬ 2 ∥ (-1↑𝑘)) | 
| 99 | 98 | a1d 25 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((-1↑𝑘) = -1
∨ (-1↑𝑘) = 1)
→ (𝑘 ∈
ℕ0 → ¬ 2 ∥ (-1↑𝑘))) | 
| 100 | 91, 99 | sylbi 217 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((-1↑𝑘) ∈
{-1, 1} → (𝑘 ∈
ℕ0 → ¬ 2 ∥ (-1↑𝑘))) | 
| 101 | 89, 100 | mpcom 38 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 ∈ ℕ0
→ ¬ 2 ∥ (-1↑𝑘)) | 
| 102 | 101 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → ¬ 2 ∥ (-1↑𝑘)) | 
| 103 |  | elnn0 12530 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 ∈ ℕ0
↔ (𝑘 ∈ ℕ
∨ 𝑘 =
0)) | 
| 104 |  | oddn2prm 16851 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ¬ 2 ∥ 𝑃) | 
| 105 | 104 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈ ℕ)
→ ¬ 2 ∥ 𝑃) | 
| 106 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈ ℕ)
→ 𝑘 ∈
ℕ) | 
| 107 |  | prmdvdsexp 16753 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((2
∈ ℙ ∧ 𝑃
∈ ℤ ∧ 𝑘
∈ ℕ) → (2 ∥ (𝑃↑𝑘) ↔ 2 ∥ 𝑃)) | 
| 108 | 47, 34, 106, 107 | mp3an2ani 1469 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈ ℕ)
→ (2 ∥ (𝑃↑𝑘) ↔ 2 ∥ 𝑃)) | 
| 109 | 105, 108 | mtbird 325 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈ ℕ)
→ ¬ 2 ∥ (𝑃↑𝑘)) | 
| 110 | 109 | expcom 413 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2})
→ ¬ 2 ∥ (𝑃↑𝑘))) | 
| 111 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑘 = 0 → (𝑃↑𝑘) = (𝑃↑0)) | 
| 112 | 111 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃↑𝑘) = (𝑃↑0)) | 
| 113 | 9 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈
ℂ) | 
| 114 | 113 | exp0d 14181 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃↑0) = 1) | 
| 115 | 112, 114 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃↑𝑘) = 1) | 
| 116 | 115 | breq2d 5154 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2
∥ (𝑃↑𝑘) ↔ 2 ∥
1)) | 
| 117 | 95, 116 | mtbiri 327 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → ¬
2 ∥ (𝑃↑𝑘)) | 
| 118 | 117 | ex 412 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 = 0 → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2
∥ (𝑃↑𝑘))) | 
| 119 | 110, 118 | jaoi 857 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2
∥ (𝑃↑𝑘))) | 
| 120 | 103, 119 | sylbi 217 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 ∈ ℕ0
→ (𝑃 ∈ (ℙ
∖ {2}) → ¬ 2 ∥ (𝑃↑𝑘))) | 
| 121 | 120 | impcom 407 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → ¬ 2 ∥ (𝑃↑𝑘)) | 
| 122 |  | ioran 985 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (¬ (2
∥ (-1↑𝑘) ∨ 2
∥ (𝑃↑𝑘)) ↔ (¬ 2 ∥
(-1↑𝑘) ∧ ¬ 2
∥ (𝑃↑𝑘))) | 
| 123 | 102, 121,
122 | sylanbrc 583 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → ¬ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃↑𝑘))) | 
| 124 | 28, 31 | mpan 690 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 ∈ ℕ0
→ (-1↑𝑘) ∈
ℤ) | 
| 125 | 124 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → (-1↑𝑘) ∈ ℤ) | 
| 126 | 6, 7, 76 | 3syl 18 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℕ0) | 
| 127 | 126 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → 𝑃 ∈
ℕ0) | 
| 128 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → 𝑘 ∈ ℕ0) | 
| 129 | 127, 128 | nn0expcld 14286 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → (𝑃↑𝑘) ∈
ℕ0) | 
| 130 | 129 | nn0zd 12641 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → (𝑃↑𝑘) ∈ ℤ) | 
| 131 |  | euclemma 16751 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((2
∈ ℙ ∧ (-1↑𝑘) ∈ ℤ ∧ (𝑃↑𝑘) ∈ ℤ) → (2 ∥
((-1↑𝑘) ·
(𝑃↑𝑘)) ↔ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃↑𝑘)))) | 
| 132 | 47, 125, 130, 131 | mp3an2i 1467 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → (2 ∥ ((-1↑𝑘) · (𝑃↑𝑘)) ↔ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃↑𝑘)))) | 
| 133 | 123, 132 | mtbird 325 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → ¬ 2 ∥ ((-1↑𝑘) · (𝑃↑𝑘))) | 
| 134 | 133 | ex 412 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑘 ∈
ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃↑𝑘)))) | 
| 135 | 134 | 3ad2ant1 1133 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑘 ∈
ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃↑𝑘)))) | 
| 136 | 135 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) →
(𝑘 ∈
ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃↑𝑘)))) | 
| 137 | 136, 30 | impel 505 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑃 ∈
(ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ¬ 2 ∥
((-1↑𝑘) ·
(𝑃↑𝑘))) | 
| 138 |  | nnm1nn0 12569 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈
ℕ0) | 
| 139 |  | hashfz0 14472 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑀 − 1) ∈
ℕ0 → (♯‘(0...(𝑀 − 1))) = ((𝑀 − 1) + 1)) | 
| 140 | 138, 139 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑀 ∈ ℕ →
(♯‘(0...(𝑀
− 1))) = ((𝑀 −
1) + 1)) | 
| 141 |  | nncn 12275 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℂ) | 
| 142 |  | npcan1 11689 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀) | 
| 143 | 141, 142 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑀 ∈ ℕ → ((𝑀 − 1) + 1) = 𝑀) | 
| 144 | 140, 143 | eqtr2d 2777 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑀 ∈ ℕ → 𝑀 = (♯‘(0...(𝑀 − 1)))) | 
| 145 | 144 | 3ad2ant2 1134 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑀 =
(♯‘(0...(𝑀
− 1)))) | 
| 146 | 145 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 𝑀 = 1) →
𝑀 =
(♯‘(0...(𝑀
− 1)))) | 
| 147 | 146 | breq2d 5154 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 𝑀 = 1) →
(2 ∥ 𝑀 ↔ 2
∥ (♯‘(0...(𝑀 − 1))))) | 
| 148 | 147 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 𝑀 = 1) →
(¬ 2 ∥ 𝑀 ↔
¬ 2 ∥ (♯‘(0...(𝑀 − 1))))) | 
| 149 | 148 | biimpd 229 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 𝑀 = 1) →
(¬ 2 ∥ 𝑀 →
¬ 2 ∥ (♯‘(0...(𝑀 − 1))))) | 
| 150 | 149 | impr 454 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
¬ 2 ∥ (♯‘(0...(𝑀 − 1)))) | 
| 151 | 150 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) →
¬ 2 ∥ (♯‘(0...(𝑀 − 1)))) | 
| 152 | 73, 86, 137, 151 | oddsumodd 16428 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) →
¬ 2 ∥ Σ𝑘
∈ (0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘))) | 
| 153 | 152 | pm2.21d 121 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) → (2
∥ Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) → 𝑀 = 1)) | 
| 154 | 153 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑃 ∈
(ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) = (2↑𝑛)) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) → 𝑀 = 1)) | 
| 155 | 72, 154 | sylbird 260 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝑃 ∈
(ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) = (2↑𝑛)) → (2 ∥ (2↑𝑛) → 𝑀 = 1)) | 
| 156 | 155 | ex 412 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) →
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) = (2↑𝑛) → (2 ∥ (2↑𝑛) → 𝑀 = 1))) | 
| 157 | 70, 156 | mpid 44 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) →
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) = (2↑𝑛) → 𝑀 = 1)) | 
| 158 | 157 | rexlimdva 3154 | . . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
(∃𝑛 ∈ ℕ
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) = (2↑𝑛) → 𝑀 = 1)) | 
| 159 | 66, 158 | syld 47 | . . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)) | 
| 160 | 159 | exp32 420 | . . . . . . . . . . . . 13
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (¬ 𝑀 = 1 →
(¬ 2 ∥ 𝑀 →
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)))) | 
| 161 | 160 | com12 32 | . . . . . . . . . . . 12
⊢ (¬
𝑀 = 1 → ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (¬ 2 ∥ 𝑀
→ (Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)))) | 
| 162 | 161 | impd 410 | . . . . . . . . . . 11
⊢ (¬
𝑀 = 1 → (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ (Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))) | 
| 163 | 46, 162 | pm2.61i 182 | . . . . . . . . . 10
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ (Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)) | 
| 164 | 163 | adantr 480 | . . . . . . . . 9
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
∧ ((𝑃 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)) | 
| 165 | 45, 164 | sylbid 240 | . . . . . . . 8
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
∧ ((𝑃 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) → 𝑀 = 1)) | 
| 166 | 43, 165 | mpd 15 | . . . . . . 7
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
∧ ((𝑃 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁)) → 𝑀 = 1) | 
| 167 | 166 | ex 412 | . . . . . 6
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ (((𝑃 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁) → 𝑀 = 1)) | 
| 168 | 22, 167 | sylbid 240 | . . . . 5
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ (((𝑃↑𝑀) + 1) = (2↑𝑁) → 𝑀 = 1)) | 
| 169 | 17, 168 | sylbid 240 | . . . 4
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ (((2↑𝑁) −
1) = (𝑃↑𝑀) → 𝑀 = 1)) | 
| 170 | 169 | ex 412 | . . 3
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (¬ 2 ∥ 𝑀
→ (((2↑𝑁) −
1) = (𝑃↑𝑀) → 𝑀 = 1))) | 
| 171 | 170 | adantld 490 | . 2
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((¬ 2 ∥ 𝑁
∧ ¬ 2 ∥ 𝑀)
→ (((2↑𝑁) −
1) = (𝑃↑𝑀) → 𝑀 = 1))) | 
| 172 | 171 | 3imp 1110 | 1
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 2 ∥ 𝑁
∧ ¬ 2 ∥ 𝑀)
∧ ((2↑𝑁) −
1) = (𝑃↑𝑀)) → 𝑀 = 1) |