Step | Hyp | Ref
| Expression |
1 | | 2cnd 11981 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 2 ∈
ℂ) |
2 | | nnnn0 12170 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
3 | 1, 2 | expcld 13792 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(2↑𝑁) ∈
ℂ) |
4 | 3 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (2↑𝑁) ∈
ℂ) |
5 | | 1cnd 10901 |
. . . . . . . 8
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 1 ∈ ℂ) |
6 | | eldifi 4057 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℙ) |
7 | | prmnn 16307 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
8 | | nncn 11911 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℂ) |
9 | 6, 7, 8 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℂ) |
10 | 9 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑃 ∈
ℂ) |
11 | | nnnn0 12170 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
12 | 11 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑀 ∈
ℕ0) |
13 | 10, 12 | expcld 13792 |
. . . . . . . 8
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑃↑𝑀) ∈
ℂ) |
14 | 4, 5, 13 | 3jca 1126 |
. . . . . . 7
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((2↑𝑁) ∈
ℂ ∧ 1 ∈ ℂ ∧ (𝑃↑𝑀) ∈ ℂ)) |
15 | 14 | adantr 480 |
. . . . . 6
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ ((2↑𝑁) ∈
ℂ ∧ 1 ∈ ℂ ∧ (𝑃↑𝑀) ∈ ℂ)) |
16 | | subadd2 11155 |
. . . . . 6
⊢
(((2↑𝑁) ∈
ℂ ∧ 1 ∈ ℂ ∧ (𝑃↑𝑀) ∈ ℂ) → (((2↑𝑁) − 1) = (𝑃↑𝑀) ↔ ((𝑃↑𝑀) + 1) = (2↑𝑁))) |
17 | 15, 16 | syl 17 |
. . . . 5
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ (((2↑𝑁) −
1) = (𝑃↑𝑀) ↔ ((𝑃↑𝑀) + 1) = (2↑𝑁))) |
18 | 10 | adantr 480 |
. . . . . . . 8
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ 𝑃 ∈
ℂ) |
19 | | simpl2 1190 |
. . . . . . . 8
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ 𝑀 ∈
ℕ) |
20 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ ¬ 2 ∥ 𝑀) |
21 | 18, 19, 20 | oddpwp1fsum 16029 |
. . . . . . 7
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ ((𝑃↑𝑀) + 1) = ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)))) |
22 | 21 | eqeq1d 2740 |
. . . . . 6
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ (((𝑃↑𝑀) + 1) = (2↑𝑁) ↔ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁))) |
23 | | peano2nn 11915 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℕ → (𝑃 + 1) ∈
ℕ) |
24 | 23 | nnzd 12354 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℕ → (𝑃 + 1) ∈
ℤ) |
25 | 6, 7, 24 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 + 1) ∈
ℤ) |
26 | 25 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑃 + 1) ∈
ℤ) |
27 | | fzfid 13621 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (0...(𝑀 − 1))
∈ Fin) |
28 | | neg1z 12286 |
. . . . . . . . . . . . . . 15
⊢ -1 ∈
ℤ |
29 | 28 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ -1 ∈ ℤ) |
30 | | elfznn0 13278 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...(𝑀 − 1)) → 𝑘 ∈ ℕ0) |
31 | | zexpcl 13725 |
. . . . . . . . . . . . . 14
⊢ ((-1
∈ ℤ ∧ 𝑘
∈ ℕ0) → (-1↑𝑘) ∈ ℤ) |
32 | 29, 30, 31 | syl2an 595 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ 𝑘 ∈ (0...(𝑀 − 1))) →
(-1↑𝑘) ∈
ℤ) |
33 | | nnz 12272 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℤ) |
34 | 6, 7, 33 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℤ) |
35 | 34 | 3ad2ant1 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑃 ∈
ℤ) |
36 | | zexpcl 13725 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℤ ∧ 𝑘 ∈ ℕ0)
→ (𝑃↑𝑘) ∈
ℤ) |
37 | 35, 30, 36 | syl2an 595 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝑃↑𝑘) ∈ ℤ) |
38 | 32, 37 | zmulcld 12361 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ 𝑘 ∈ (0...(𝑀 − 1))) →
((-1↑𝑘) ·
(𝑃↑𝑘)) ∈ ℤ) |
39 | 27, 38 | fsumzcl 15375 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∈ ℤ) |
40 | 26, 39 | jca 511 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝑃 + 1) ∈
ℤ ∧ Σ𝑘
∈ (0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∈ ℤ)) |
41 | 40 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
∧ ((𝑃 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁)) → ((𝑃 + 1) ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∈ ℤ)) |
42 | | dvdsmul2 15916 |
. . . . . . . . 9
⊢ (((𝑃 + 1) ∈ ℤ ∧
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∈ ℤ) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)))) |
43 | 41, 42 | syl 17 |
. . . . . . . 8
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
∧ ((𝑃 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁)) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)))) |
44 | | breq2 5074 |
. . . . . . . . . 10
⊢ (((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) ↔ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ (2↑𝑁))) |
45 | 44 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
∧ ((𝑃 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) ↔ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ (2↑𝑁))) |
46 | | 2a1 28 |
. . . . . . . . . . 11
⊢ (𝑀 = 1 → (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2
∥ 𝑀) →
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))) |
47 | | 2prm 16325 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℙ |
48 | | prmuz2 16329 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
49 | 6, 48 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
(ℤ≥‘2)) |
50 | 49 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑃 ∈
(ℤ≥‘2)) |
51 | 50 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
𝑃 ∈
(ℤ≥‘2)) |
52 | | df-ne 2943 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 ≠ 1 ↔ ¬ 𝑀 = 1) |
53 | | eluz2b3 12591 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑀 ∈
(ℤ≥‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1)) |
54 | 53 | simplbi2 500 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 ∈ ℕ → (𝑀 ≠ 1 → 𝑀 ∈
(ℤ≥‘2))) |
55 | 52, 54 | syl5bir 242 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈ ℕ → (¬
𝑀 = 1 → 𝑀 ∈
(ℤ≥‘2))) |
56 | 55 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (¬ 𝑀 = 1 →
𝑀 ∈
(ℤ≥‘2))) |
57 | 56 | com12 32 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑀 = 1 → ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑀 ∈
(ℤ≥‘2))) |
58 | 57 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((¬
𝑀 = 1 ∧ ¬ 2 ∥
𝑀) → ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑀 ∈
(ℤ≥‘2))) |
59 | 58 | impcom 407 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
𝑀 ∈
(ℤ≥‘2)) |
60 | | simprr 769 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
¬ 2 ∥ 𝑀) |
61 | | lighneallem4b 44949 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2)
∧ ¬ 2 ∥ 𝑀)
→ Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∈
(ℤ≥‘2)) |
62 | 51, 59, 60, 61 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∈
(ℤ≥‘2)) |
63 | 2 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑁 ∈
ℕ0) |
64 | 63 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
𝑁 ∈
ℕ0) |
65 | | dvdsprmpweqnn 16514 |
. . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℙ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∈ (ℤ≥‘2)
∧ 𝑁 ∈
ℕ0) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ (2↑𝑁) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) = (2↑𝑛))) |
66 | 47, 62, 64, 65 | mp3an2i 1464 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∥ (2↑𝑁) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) = (2↑𝑛))) |
67 | | 2z 12282 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℤ |
68 | 67 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
2 ∈ ℤ) |
69 | | iddvdsexp 15917 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℤ ∧ 𝑛
∈ ℕ) → 2 ∥ (2↑𝑛)) |
70 | 68, 69 | sylan 579 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) → 2
∥ (2↑𝑛)) |
71 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) = (2↑𝑛) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ↔ 2 ∥ (2↑𝑛))) |
72 | 71 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑃 ∈
(ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) = (2↑𝑛)) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ↔ 2 ∥ (2↑𝑛))) |
73 | | fzfid 13621 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) →
(0...(𝑀 − 1)) ∈
Fin) |
74 | 28 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑃 ∈ ℕ → -1 ∈
ℤ) |
75 | 74, 31 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ (-1↑𝑘) ∈
ℤ) |
76 | | nnnn0 12170 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℕ0) |
77 | 76 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ 𝑃 ∈
ℕ0) |
78 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ 𝑘 ∈
ℕ0) |
79 | 77, 78 | nn0expcld 13889 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ (𝑃↑𝑘) ∈
ℕ0) |
80 | 79 | nn0zd 12353 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ (𝑃↑𝑘) ∈
ℤ) |
81 | 75, 80 | zmulcld 12361 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ ((-1↑𝑘)
· (𝑃↑𝑘)) ∈
ℤ) |
82 | 81 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑃 ∈ ℕ → (𝑘 ∈ ℕ0
→ ((-1↑𝑘)
· (𝑃↑𝑘)) ∈
ℤ)) |
83 | 6, 7, 82 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑘 ∈
ℕ0 → ((-1↑𝑘) · (𝑃↑𝑘)) ∈ ℤ)) |
84 | 83 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑘 ∈
ℕ0 → ((-1↑𝑘) · (𝑃↑𝑘)) ∈ ℤ)) |
85 | 84 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) →
(𝑘 ∈
ℕ0 → ((-1↑𝑘) · (𝑃↑𝑘)) ∈ ℤ)) |
86 | 85, 30 | impel 505 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑃 ∈
(ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ((-1↑𝑘) · (𝑃↑𝑘)) ∈ ℤ) |
87 | | nn0z 12273 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
88 | | m1expcl2 13732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 ∈ ℤ →
(-1↑𝑘) ∈ {-1,
1}) |
89 | 87, 88 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 ∈ ℕ0
→ (-1↑𝑘) ∈
{-1, 1}) |
90 | | ovex 7288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(-1↑𝑘) ∈
V |
91 | 90 | elpr 4581 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((-1↑𝑘) ∈
{-1, 1} ↔ ((-1↑𝑘)
= -1 ∨ (-1↑𝑘) =
1)) |
92 | | n2dvdsm1 16006 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ¬ 2
∥ -1 |
93 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((-1↑𝑘) = -1
→ (2 ∥ (-1↑𝑘) ↔ 2 ∥ -1)) |
94 | 92, 93 | mtbiri 326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((-1↑𝑘) = -1
→ ¬ 2 ∥ (-1↑𝑘)) |
95 | | n2dvds1 16005 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ¬ 2
∥ 1 |
96 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((-1↑𝑘) = 1
→ (2 ∥ (-1↑𝑘) ↔ 2 ∥ 1)) |
97 | 95, 96 | mtbiri 326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((-1↑𝑘) = 1
→ ¬ 2 ∥ (-1↑𝑘)) |
98 | 94, 97 | jaoi 853 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((-1↑𝑘) = -1
∨ (-1↑𝑘) = 1)
→ ¬ 2 ∥ (-1↑𝑘)) |
99 | 98 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((-1↑𝑘) = -1
∨ (-1↑𝑘) = 1)
→ (𝑘 ∈
ℕ0 → ¬ 2 ∥ (-1↑𝑘))) |
100 | 91, 99 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((-1↑𝑘) ∈
{-1, 1} → (𝑘 ∈
ℕ0 → ¬ 2 ∥ (-1↑𝑘))) |
101 | 89, 100 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 ∈ ℕ0
→ ¬ 2 ∥ (-1↑𝑘)) |
102 | 101 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → ¬ 2 ∥ (-1↑𝑘)) |
103 | | elnn0 12165 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 ∈ ℕ0
↔ (𝑘 ∈ ℕ
∨ 𝑘 =
0)) |
104 | | oddn2prm 16441 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ¬ 2 ∥ 𝑃) |
105 | 104 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈ ℕ)
→ ¬ 2 ∥ 𝑃) |
106 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈ ℕ)
→ 𝑘 ∈
ℕ) |
107 | | prmdvdsexp 16348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((2
∈ ℙ ∧ 𝑃
∈ ℤ ∧ 𝑘
∈ ℕ) → (2 ∥ (𝑃↑𝑘) ↔ 2 ∥ 𝑃)) |
108 | 47, 34, 106, 107 | mp3an2ani 1466 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈ ℕ)
→ (2 ∥ (𝑃↑𝑘) ↔ 2 ∥ 𝑃)) |
109 | 105, 108 | mtbird 324 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈ ℕ)
→ ¬ 2 ∥ (𝑃↑𝑘)) |
110 | 109 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2})
→ ¬ 2 ∥ (𝑃↑𝑘))) |
111 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑘 = 0 → (𝑃↑𝑘) = (𝑃↑0)) |
112 | 111 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃↑𝑘) = (𝑃↑0)) |
113 | 9 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈
ℂ) |
114 | 113 | exp0d 13786 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃↑0) = 1) |
115 | 112, 114 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃↑𝑘) = 1) |
116 | 115 | breq2d 5082 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2
∥ (𝑃↑𝑘) ↔ 2 ∥
1)) |
117 | 95, 116 | mtbiri 326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → ¬
2 ∥ (𝑃↑𝑘)) |
118 | 117 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 = 0 → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2
∥ (𝑃↑𝑘))) |
119 | 110, 118 | jaoi 853 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2
∥ (𝑃↑𝑘))) |
120 | 103, 119 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 ∈ ℕ0
→ (𝑃 ∈ (ℙ
∖ {2}) → ¬ 2 ∥ (𝑃↑𝑘))) |
121 | 120 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → ¬ 2 ∥ (𝑃↑𝑘)) |
122 | | ioran 980 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (¬ (2
∥ (-1↑𝑘) ∨ 2
∥ (𝑃↑𝑘)) ↔ (¬ 2 ∥
(-1↑𝑘) ∧ ¬ 2
∥ (𝑃↑𝑘))) |
123 | 102, 121,
122 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → ¬ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃↑𝑘))) |
124 | 28, 31 | mpan 686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 ∈ ℕ0
→ (-1↑𝑘) ∈
ℤ) |
125 | 124 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → (-1↑𝑘) ∈ ℤ) |
126 | 6, 7, 76 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℕ0) |
127 | 126 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → 𝑃 ∈
ℕ0) |
128 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → 𝑘 ∈ ℕ0) |
129 | 127, 128 | nn0expcld 13889 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → (𝑃↑𝑘) ∈
ℕ0) |
130 | 129 | nn0zd 12353 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → (𝑃↑𝑘) ∈ ℤ) |
131 | | euclemma 16346 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((2
∈ ℙ ∧ (-1↑𝑘) ∈ ℤ ∧ (𝑃↑𝑘) ∈ ℤ) → (2 ∥
((-1↑𝑘) ·
(𝑃↑𝑘)) ↔ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃↑𝑘)))) |
132 | 47, 125, 130, 131 | mp3an2i 1464 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → (2 ∥ ((-1↑𝑘) · (𝑃↑𝑘)) ↔ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃↑𝑘)))) |
133 | 123, 132 | mtbird 324 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑘 ∈
ℕ0) → ¬ 2 ∥ ((-1↑𝑘) · (𝑃↑𝑘))) |
134 | 133 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑘 ∈
ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃↑𝑘)))) |
135 | 134 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝑘 ∈
ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃↑𝑘)))) |
136 | 135 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) →
(𝑘 ∈
ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃↑𝑘)))) |
137 | 136, 30 | impel 505 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑃 ∈
(ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ¬ 2 ∥
((-1↑𝑘) ·
(𝑃↑𝑘))) |
138 | | nnm1nn0 12204 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑀 ∈ ℕ → (𝑀 − 1) ∈
ℕ0) |
139 | | hashfz0 14075 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑀 − 1) ∈
ℕ0 → (♯‘(0...(𝑀 − 1))) = ((𝑀 − 1) + 1)) |
140 | 138, 139 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑀 ∈ ℕ →
(♯‘(0...(𝑀
− 1))) = ((𝑀 −
1) + 1)) |
141 | | nncn 11911 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℂ) |
142 | | npcan1 11330 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀) |
143 | 141, 142 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑀 ∈ ℕ → ((𝑀 − 1) + 1) = 𝑀) |
144 | 140, 143 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑀 ∈ ℕ → 𝑀 = (♯‘(0...(𝑀 − 1)))) |
145 | 144 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝑀 =
(♯‘(0...(𝑀
− 1)))) |
146 | 145 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 𝑀 = 1) →
𝑀 =
(♯‘(0...(𝑀
− 1)))) |
147 | 146 | breq2d 5082 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 𝑀 = 1) →
(2 ∥ 𝑀 ↔ 2
∥ (♯‘(0...(𝑀 − 1))))) |
148 | 147 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 𝑀 = 1) →
(¬ 2 ∥ 𝑀 ↔
¬ 2 ∥ (♯‘(0...(𝑀 − 1))))) |
149 | 148 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 𝑀 = 1) →
(¬ 2 ∥ 𝑀 →
¬ 2 ∥ (♯‘(0...(𝑀 − 1))))) |
150 | 149 | impr 454 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
¬ 2 ∥ (♯‘(0...(𝑀 − 1)))) |
151 | 150 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) →
¬ 2 ∥ (♯‘(0...(𝑀 − 1)))) |
152 | 73, 86, 137, 151 | oddsumodd 16027 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) →
¬ 2 ∥ Σ𝑘
∈ (0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘))) |
153 | 152 | pm2.21d 121 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) → (2
∥ Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) → 𝑀 = 1)) |
154 | 153 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑃 ∈
(ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) = (2↑𝑛)) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) → 𝑀 = 1)) |
155 | 72, 154 | sylbird 259 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑃 ∈
(ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) = (2↑𝑛)) → (2 ∥ (2↑𝑛) → 𝑀 = 1)) |
156 | 155 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) →
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) = (2↑𝑛) → (2 ∥ (2↑𝑛) → 𝑀 = 1))) |
157 | 70, 156 | mpid 44 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) ∧
𝑛 ∈ ℕ) →
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) = (2↑𝑛) → 𝑀 = 1)) |
158 | 157 | rexlimdva 3212 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
(∃𝑛 ∈ ℕ
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) = (2↑𝑛) → 𝑀 = 1)) |
159 | 66, 158 | syld 47 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 𝑀 = 1 ∧
¬ 2 ∥ 𝑀)) →
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)) |
160 | 159 | exp32 420 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (¬ 𝑀 = 1 →
(¬ 2 ∥ 𝑀 →
(Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)))) |
161 | 160 | com12 32 |
. . . . . . . . . . . 12
⊢ (¬
𝑀 = 1 → ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (¬ 2 ∥ 𝑀
→ (Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)))) |
162 | 161 | impd 410 |
. . . . . . . . . . 11
⊢ (¬
𝑀 = 1 → (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ (Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))) |
163 | 46, 162 | pm2.61i 182 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ (Σ𝑘 ∈
(0...(𝑀 −
1))((-1↑𝑘) ·
(𝑃↑𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)) |
164 | 163 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
∧ ((𝑃 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)) |
165 | 45, 164 | sylbid 239 |
. . . . . . . 8
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
∧ ((𝑃 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) → 𝑀 = 1)) |
166 | 43, 165 | mpd 15 |
. . . . . . 7
⊢ ((((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
∧ ((𝑃 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁)) → 𝑀 = 1) |
167 | 166 | ex 412 |
. . . . . 6
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ (((𝑃 + 1) ·
Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃↑𝑘))) = (2↑𝑁) → 𝑀 = 1)) |
168 | 22, 167 | sylbid 239 |
. . . . 5
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ (((𝑃↑𝑀) + 1) = (2↑𝑁) → 𝑀 = 1)) |
169 | 17, 168 | sylbid 239 |
. . . 4
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ ¬ 2 ∥ 𝑀)
→ (((2↑𝑁) −
1) = (𝑃↑𝑀) → 𝑀 = 1)) |
170 | 169 | ex 412 |
. . 3
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (¬ 2 ∥ 𝑀
→ (((2↑𝑁) −
1) = (𝑃↑𝑀) → 𝑀 = 1))) |
171 | 170 | adantld 490 |
. 2
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((¬ 2 ∥ 𝑁
∧ ¬ 2 ∥ 𝑀)
→ (((2↑𝑁) −
1) = (𝑃↑𝑀) → 𝑀 = 1))) |
172 | 171 | 3imp 1109 |
1
⊢ (((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑀 ∈ ℕ
∧ 𝑁 ∈ ℕ)
∧ (¬ 2 ∥ 𝑁
∧ ¬ 2 ∥ 𝑀)
∧ ((2↑𝑁) −
1) = (𝑃↑𝑀)) → 𝑀 = 1) |