Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem4 Structured version   Visualization version   GIF version

Theorem lighneallem4 47484
Description: Lemma 3 for lighneal 47485. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneallem4 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)

Proof of Theorem lighneallem4
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2cnd 12371 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℂ)
2 nnnn0 12560 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
31, 2expcld 14196 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℂ)
433ad2ant3 1135 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℂ)
5 1cnd 11285 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
6 eldifi 4154 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
7 prmnn 16721 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
8 nncn 12301 . . . . . . . . . . 11 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
96, 7, 83syl 18 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℂ)
1093ad2ant1 1133 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ ℂ)
11 nnnn0 12560 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
12113ad2ant2 1134 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ0)
1310, 12expcld 14196 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃𝑀) ∈ ℂ)
144, 5, 133jca 1128 . . . . . . 7 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑃𝑀) ∈ ℂ))
1514adantr 480 . . . . . 6 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → ((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑃𝑀) ∈ ℂ))
16 subadd2 11540 . . . . . 6 (((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑃𝑀) ∈ ℂ) → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ ((𝑃𝑀) + 1) = (2↑𝑁)))
1715, 16syl 17 . . . . 5 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ ((𝑃𝑀) + 1) = (2↑𝑁)))
1810adantr 480 . . . . . . . 8 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → 𝑃 ∈ ℂ)
19 simpl2 1192 . . . . . . . 8 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℕ)
20 simpr 484 . . . . . . . 8 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → ¬ 2 ∥ 𝑀)
2118, 19, 20oddpwp1fsum 16440 . . . . . . 7 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → ((𝑃𝑀) + 1) = ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))))
2221eqeq1d 2742 . . . . . 6 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((𝑃𝑀) + 1) = (2↑𝑁) ↔ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)))
23 peano2nn 12305 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → (𝑃 + 1) ∈ ℕ)
2423nnzd 12666 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (𝑃 + 1) ∈ ℤ)
256, 7, 243syl 18 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 + 1) ∈ ℤ)
26253ad2ant1 1133 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 + 1) ∈ ℤ)
27 fzfid 14024 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0...(𝑀 − 1)) ∈ Fin)
28 neg1z 12679 . . . . . . . . . . . . . . 15 -1 ∈ ℤ
2928a1i 11 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → -1 ∈ ℤ)
30 elfznn0 13677 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...(𝑀 − 1)) → 𝑘 ∈ ℕ0)
31 zexpcl 14127 . . . . . . . . . . . . . 14 ((-1 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℤ)
3229, 30, 31syl2an 595 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (-1↑𝑘) ∈ ℤ)
33 nnz 12660 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
346, 7, 333syl 18 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
35343ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ ℤ)
36 zexpcl 14127 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℤ)
3735, 30, 36syl2an 595 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝑃𝑘) ∈ ℤ)
3832, 37zmulcld 12753 . . . . . . . . . . . 12 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ)
3927, 38fsumzcl 15783 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ)
4026, 39jca 511 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃 + 1) ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
4140ad2antrr 725 . . . . . . . . 9 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → ((𝑃 + 1) ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
42 dvdsmul2 16327 . . . . . . . . 9 (((𝑃 + 1) ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))))
4341, 42syl 17 . . . . . . . 8 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))))
44 breq2 5170 . . . . . . . . . 10 (((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) ↔ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁)))
4544adantl 481 . . . . . . . . 9 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) ↔ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁)))
46 2a1 28 . . . . . . . . . . 11 (𝑀 = 1 → (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)))
47 2prm 16739 . . . . . . . . . . . . . . . 16 2 ∈ ℙ
48 prmuz2 16743 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
496, 48syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
50493ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ (ℤ‘2))
5150adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → 𝑃 ∈ (ℤ‘2))
52 df-ne 2947 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ≠ 1 ↔ ¬ 𝑀 = 1)
53 eluz2b3 12987 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
5453simplbi2 500 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → (𝑀 ≠ 1 → 𝑀 ∈ (ℤ‘2)))
5552, 54biimtrrid 243 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → (¬ 𝑀 = 1 → 𝑀 ∈ (ℤ‘2)))
56553ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ 𝑀 = 1 → 𝑀 ∈ (ℤ‘2)))
5756com12 32 . . . . . . . . . . . . . . . . . . 19 𝑀 = 1 → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ (ℤ‘2)))
5857adantr 480 . . . . . . . . . . . . . . . . . 18 ((¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ (ℤ‘2)))
5958impcom 407 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → 𝑀 ∈ (ℤ‘2))
60 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → ¬ 2 ∥ 𝑀)
61 lighneallem4b 47483 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ (ℤ‘2))
6251, 59, 60, 61syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ (ℤ‘2))
6323ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
6463adantr 480 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → 𝑁 ∈ ℕ0)
65 dvdsprmpweqnn 16932 . . . . . . . . . . . . . . . 16 ((2 ∈ ℙ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)))
6647, 62, 64, 65mp3an2i 1466 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)))
67 2z 12675 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
6867a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → 2 ∈ ℤ)
69 iddvdsexp 16328 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 2 ∥ (2↑𝑛))
7068, 69sylan 579 . . . . . . . . . . . . . . . . 17 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → 2 ∥ (2↑𝑛))
71 breq2 5170 . . . . . . . . . . . . . . . . . . . 20 𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ↔ 2 ∥ (2↑𝑛)))
7271adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ↔ 2 ∥ (2↑𝑛)))
73 fzfid 14024 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (0...(𝑀 − 1)) ∈ Fin)
7428a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑃 ∈ ℕ → -1 ∈ ℤ)
7574, 31sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℤ)
76 nnnn0 12560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
7776adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ ℕ0)
78 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7977, 78nn0expcld 14295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ0)
8079nn0zd 12665 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℤ)
8175, 80zmulcld 12753 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ)
8281ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ → (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
836, 7, 823syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ (ℙ ∖ {2}) → (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
84833ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
8584ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
8685, 30impel 505 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ)
87 nn0z 12664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
88 m1expcl2 14136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℤ → (-1↑𝑘) ∈ {-1, 1})
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ {-1, 1})
90 ovex 7481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (-1↑𝑘) ∈ V
9190elpr 4672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-1↑𝑘) ∈ {-1, 1} ↔ ((-1↑𝑘) = -1 ∨ (-1↑𝑘) = 1))
92 n2dvdsm1 16417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ¬ 2 ∥ -1
93 breq2 5170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((-1↑𝑘) = -1 → (2 ∥ (-1↑𝑘) ↔ 2 ∥ -1))
9492, 93mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((-1↑𝑘) = -1 → ¬ 2 ∥ (-1↑𝑘))
95 n2dvds1 16416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ¬ 2 ∥ 1
96 breq2 5170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((-1↑𝑘) = 1 → (2 ∥ (-1↑𝑘) ↔ 2 ∥ 1))
9795, 96mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((-1↑𝑘) = 1 → ¬ 2 ∥ (-1↑𝑘))
9894, 97jaoi 856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((-1↑𝑘) = -1 ∨ (-1↑𝑘) = 1) → ¬ 2 ∥ (-1↑𝑘))
9998a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((-1↑𝑘) = -1 ∨ (-1↑𝑘) = 1) → (𝑘 ∈ ℕ0 → ¬ 2 ∥ (-1↑𝑘)))
10091, 99sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((-1↑𝑘) ∈ {-1, 1} → (𝑘 ∈ ℕ0 → ¬ 2 ∥ (-1↑𝑘)))
10189, 100mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ ℕ0 → ¬ 2 ∥ (-1↑𝑘))
102101adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → ¬ 2 ∥ (-1↑𝑘))
103 elnn0 12555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
104 oddn2prm 16859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑃)
105104adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ) → ¬ 2 ∥ 𝑃)
106 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
107 prmdvdsexp 16762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((2 ∈ ℙ ∧ 𝑃 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (2 ∥ (𝑃𝑘) ↔ 2 ∥ 𝑃))
10847, 34, 106, 107mp3an2ani 1468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ) → (2 ∥ (𝑃𝑘) ↔ 2 ∥ 𝑃))
109105, 108mtbird 325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ) → ¬ 2 ∥ (𝑃𝑘))
110109expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ (𝑃𝑘)))
111 oveq2 7456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 = 0 → (𝑃𝑘) = (𝑃↑0))
112111adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃𝑘) = (𝑃↑0))
1139adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℂ)
114113exp0d 14190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃↑0) = 1)
115112, 114eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃𝑘) = 1)
116115breq2d 5178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 ∥ (𝑃𝑘) ↔ 2 ∥ 1))
11795, 116mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → ¬ 2 ∥ (𝑃𝑘))
118117ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 0 → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ (𝑃𝑘)))
119110, 118jaoi 856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ (𝑃𝑘)))
120103, 119sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ ℕ0 → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ (𝑃𝑘)))
121120impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → ¬ 2 ∥ (𝑃𝑘))
122 ioran 984 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (¬ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃𝑘)) ↔ (¬ 2 ∥ (-1↑𝑘) ∧ ¬ 2 ∥ (𝑃𝑘)))
123102, 121, 122sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → ¬ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃𝑘)))
12428, 31mpan 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℤ)
125124adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℤ)
1266, 7, 763syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ0)
127126adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ ℕ0)
128 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
129127, 128nn0expcld 14295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ0)
130129nn0zd 12665 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℤ)
131 euclemma 16760 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℙ ∧ (-1↑𝑘) ∈ ℤ ∧ (𝑃𝑘) ∈ ℤ) → (2 ∥ ((-1↑𝑘) · (𝑃𝑘)) ↔ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃𝑘))))
13247, 125, 130, 131mp3an2i 1466 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → (2 ∥ ((-1↑𝑘) · (𝑃𝑘)) ↔ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃𝑘))))
133123, 132mtbird 325 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘)))
134133ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ (ℙ ∖ {2}) → (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘))))
1351343ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘))))
136135ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘))))
137136, 30impel 505 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘)))
138 nnm1nn0 12594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
139 hashfz0 14481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 − 1) ∈ ℕ0 → (♯‘(0...(𝑀 − 1))) = ((𝑀 − 1) + 1))
140138, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℕ → (♯‘(0...(𝑀 − 1))) = ((𝑀 − 1) + 1))
141 nncn 12301 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
142 npcan1 11715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀)
143141, 142syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℕ → ((𝑀 − 1) + 1) = 𝑀)
144140, 143eqtr2d 2781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℕ → 𝑀 = (♯‘(0...(𝑀 − 1))))
1451443ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 = (♯‘(0...(𝑀 − 1))))
146145adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑀 = 1) → 𝑀 = (♯‘(0...(𝑀 − 1))))
147146breq2d 5178 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑀 = 1) → (2 ∥ 𝑀 ↔ 2 ∥ (♯‘(0...(𝑀 − 1)))))
148147notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑀 = 1) → (¬ 2 ∥ 𝑀 ↔ ¬ 2 ∥ (♯‘(0...(𝑀 − 1)))))
149148biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑀 = 1) → (¬ 2 ∥ 𝑀 → ¬ 2 ∥ (♯‘(0...(𝑀 − 1)))))
150149impr 454 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → ¬ 2 ∥ (♯‘(0...(𝑀 − 1))))
151150adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → ¬ 2 ∥ (♯‘(0...(𝑀 − 1))))
15273, 86, 137, 151oddsumodd 16438 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → ¬ 2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)))
153152pm2.21d 121 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) → 𝑀 = 1))
154153adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) → 𝑀 = 1))
15572, 154sylbird 260 . . . . . . . . . . . . . . . . . 18 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)) → (2 ∥ (2↑𝑛) → 𝑀 = 1))
156155ex 412 . . . . . . . . . . . . . . . . 17 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛) → (2 ∥ (2↑𝑛) → 𝑀 = 1)))
15770, 156mpid 44 . . . . . . . . . . . . . . . 16 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛) → 𝑀 = 1))
158157rexlimdva 3161 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → (∃𝑛 ∈ ℕ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛) → 𝑀 = 1))
15966, 158syld 47 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))
160159exp32 420 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ 𝑀 = 1 → (¬ 2 ∥ 𝑀 → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))))
161160com12 32 . . . . . . . . . . . 12 𝑀 = 1 → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ 2 ∥ 𝑀 → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))))
162161impd 410 . . . . . . . . . . 11 𝑀 = 1 → (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)))
16346, 162pm2.61i 182 . . . . . . . . . 10 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))
164163adantr 480 . . . . . . . . 9 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))
16545, 164sylbid 240 . . . . . . . 8 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) → 𝑀 = 1))
16643, 165mpd 15 . . . . . . 7 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → 𝑀 = 1)
167166ex 412 . . . . . 6 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁) → 𝑀 = 1))
16822, 167sylbid 240 . . . . 5 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((𝑃𝑀) + 1) = (2↑𝑁) → 𝑀 = 1))
16917, 168sylbid 240 . . . 4 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))
170169ex 412 . . 3 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ 2 ∥ 𝑀 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
171170adantld 490 . 2 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
1721713imp 1111 1 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cdif 3973  {csn 4648  {cpr 4650   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  cexp 14112  chash 14379  Σcsu 15734  cdvds 16302  cprime 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884
This theorem is referenced by:  lighneal  47485
  Copyright terms: Public domain W3C validator