Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem4 Structured version   Visualization version   GIF version

Theorem lighneallem4 43782
Description: Lemma 3 for lighneal 43783. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneallem4 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)

Proof of Theorem lighneallem4
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2cnd 11718 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℂ)
2 nnnn0 11907 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
31, 2expcld 13513 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℂ)
433ad2ant3 1131 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℂ)
5 1cnd 10639 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
6 eldifi 4106 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
7 prmnn 16021 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
8 nncn 11649 . . . . . . . . . . 11 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
96, 7, 83syl 18 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℂ)
1093ad2ant1 1129 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ ℂ)
11 nnnn0 11907 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
12113ad2ant2 1130 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ0)
1310, 12expcld 13513 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃𝑀) ∈ ℂ)
144, 5, 133jca 1124 . . . . . . 7 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑃𝑀) ∈ ℂ))
1514adantr 483 . . . . . 6 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → ((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑃𝑀) ∈ ℂ))
16 subadd2 10893 . . . . . 6 (((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑃𝑀) ∈ ℂ) → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ ((𝑃𝑀) + 1) = (2↑𝑁)))
1715, 16syl 17 . . . . 5 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ ((𝑃𝑀) + 1) = (2↑𝑁)))
1810adantr 483 . . . . . . . 8 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → 𝑃 ∈ ℂ)
19 simpl2 1188 . . . . . . . 8 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℕ)
20 simpr 487 . . . . . . . 8 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → ¬ 2 ∥ 𝑀)
2118, 19, 20oddpwp1fsum 15746 . . . . . . 7 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → ((𝑃𝑀) + 1) = ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))))
2221eqeq1d 2826 . . . . . 6 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((𝑃𝑀) + 1) = (2↑𝑁) ↔ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)))
23 peano2nn 11653 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → (𝑃 + 1) ∈ ℕ)
2423nnzd 12089 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (𝑃 + 1) ∈ ℤ)
256, 7, 243syl 18 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 + 1) ∈ ℤ)
26253ad2ant1 1129 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 + 1) ∈ ℤ)
27 fzfid 13344 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0...(𝑀 − 1)) ∈ Fin)
28 neg1z 12021 . . . . . . . . . . . . . . 15 -1 ∈ ℤ
2928a1i 11 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → -1 ∈ ℤ)
30 elfznn0 13003 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...(𝑀 − 1)) → 𝑘 ∈ ℕ0)
31 zexpcl 13447 . . . . . . . . . . . . . 14 ((-1 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℤ)
3229, 30, 31syl2an 597 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (-1↑𝑘) ∈ ℤ)
33 nnz 12007 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
346, 7, 333syl 18 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
35343ad2ant1 1129 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ ℤ)
36 zexpcl 13447 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℤ)
3735, 30, 36syl2an 597 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝑃𝑘) ∈ ℤ)
3832, 37zmulcld 12096 . . . . . . . . . . . 12 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ)
3927, 38fsumzcl 15095 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ)
4026, 39jca 514 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃 + 1) ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
4140ad2antrr 724 . . . . . . . . 9 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → ((𝑃 + 1) ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
42 dvdsmul2 15635 . . . . . . . . 9 (((𝑃 + 1) ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))))
4341, 42syl 17 . . . . . . . 8 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))))
44 breq2 5073 . . . . . . . . . 10 (((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) ↔ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁)))
4544adantl 484 . . . . . . . . 9 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) ↔ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁)))
46 2a1 28 . . . . . . . . . . 11 (𝑀 = 1 → (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)))
47 2prm 16039 . . . . . . . . . . . . . . . 16 2 ∈ ℙ
48 prmuz2 16043 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
496, 48syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
50493ad2ant1 1129 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ (ℤ‘2))
5150adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → 𝑃 ∈ (ℤ‘2))
52 df-ne 3020 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ≠ 1 ↔ ¬ 𝑀 = 1)
53 eluz2b3 12325 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
5453simplbi2 503 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → (𝑀 ≠ 1 → 𝑀 ∈ (ℤ‘2)))
5552, 54syl5bir 245 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → (¬ 𝑀 = 1 → 𝑀 ∈ (ℤ‘2)))
56553ad2ant2 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ 𝑀 = 1 → 𝑀 ∈ (ℤ‘2)))
5756com12 32 . . . . . . . . . . . . . . . . . . 19 𝑀 = 1 → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ (ℤ‘2)))
5857adantr 483 . . . . . . . . . . . . . . . . . 18 ((¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ (ℤ‘2)))
5958impcom 410 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → 𝑀 ∈ (ℤ‘2))
60 simprr 771 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → ¬ 2 ∥ 𝑀)
61 lighneallem4b 43781 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ (ℤ‘2))
6251, 59, 60, 61syl3anc 1367 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ (ℤ‘2))
6323ad2ant3 1131 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
6463adantr 483 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → 𝑁 ∈ ℕ0)
65 dvdsprmpweqnn 16224 . . . . . . . . . . . . . . . 16 ((2 ∈ ℙ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)))
6647, 62, 64, 65mp3an2i 1462 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)))
67 2z 12017 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
6867a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → 2 ∈ ℤ)
69 iddvdsexp 15636 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 2 ∥ (2↑𝑛))
7068, 69sylan 582 . . . . . . . . . . . . . . . . 17 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → 2 ∥ (2↑𝑛))
71 breq2 5073 . . . . . . . . . . . . . . . . . . . 20 𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ↔ 2 ∥ (2↑𝑛)))
7271adantl 484 . . . . . . . . . . . . . . . . . . 19 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ↔ 2 ∥ (2↑𝑛)))
73 fzfid 13344 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (0...(𝑀 − 1)) ∈ Fin)
7428a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑃 ∈ ℕ → -1 ∈ ℤ)
7574, 31sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℤ)
76 nnnn0 11907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
7776adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ ℕ0)
78 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7977, 78nn0expcld 13610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ0)
8079nn0zd 12088 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℤ)
8175, 80zmulcld 12096 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ)
8281ex 415 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ → (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
836, 7, 823syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ (ℙ ∖ {2}) → (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
84833ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
8584ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
8685, 30impel 508 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ)
87 nn0z 12008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
88 m1expcl2 13454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℤ → (-1↑𝑘) ∈ {-1, 1})
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ {-1, 1})
90 ovex 7192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (-1↑𝑘) ∈ V
9190elpr 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-1↑𝑘) ∈ {-1, 1} ↔ ((-1↑𝑘) = -1 ∨ (-1↑𝑘) = 1))
92 n2dvdsm1 15722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ¬ 2 ∥ -1
93 breq2 5073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((-1↑𝑘) = -1 → (2 ∥ (-1↑𝑘) ↔ 2 ∥ -1))
9492, 93mtbiri 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((-1↑𝑘) = -1 → ¬ 2 ∥ (-1↑𝑘))
95 n2dvds1 15720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ¬ 2 ∥ 1
96 breq2 5073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((-1↑𝑘) = 1 → (2 ∥ (-1↑𝑘) ↔ 2 ∥ 1))
9795, 96mtbiri 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((-1↑𝑘) = 1 → ¬ 2 ∥ (-1↑𝑘))
9894, 97jaoi 853 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((-1↑𝑘) = -1 ∨ (-1↑𝑘) = 1) → ¬ 2 ∥ (-1↑𝑘))
9998a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((-1↑𝑘) = -1 ∨ (-1↑𝑘) = 1) → (𝑘 ∈ ℕ0 → ¬ 2 ∥ (-1↑𝑘)))
10091, 99sylbi 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((-1↑𝑘) ∈ {-1, 1} → (𝑘 ∈ ℕ0 → ¬ 2 ∥ (-1↑𝑘)))
10189, 100mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ ℕ0 → ¬ 2 ∥ (-1↑𝑘))
102101adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → ¬ 2 ∥ (-1↑𝑘))
103 elnn0 11902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
104 oddn2prm 16152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑃)
105104adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ) → ¬ 2 ∥ 𝑃)
106 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
107 prmdvdsexp 16062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((2 ∈ ℙ ∧ 𝑃 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (2 ∥ (𝑃𝑘) ↔ 2 ∥ 𝑃))
10847, 34, 106, 107mp3an2ani 1464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ) → (2 ∥ (𝑃𝑘) ↔ 2 ∥ 𝑃))
109105, 108mtbird 327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ) → ¬ 2 ∥ (𝑃𝑘))
110109expcom 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ (𝑃𝑘)))
111 oveq2 7167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 = 0 → (𝑃𝑘) = (𝑃↑0))
112111adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃𝑘) = (𝑃↑0))
1139adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℂ)
114113exp0d 13507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃↑0) = 1)
115112, 114eqtrd 2859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃𝑘) = 1)
116115breq2d 5081 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 ∥ (𝑃𝑘) ↔ 2 ∥ 1))
11795, 116mtbiri 329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → ¬ 2 ∥ (𝑃𝑘))
118117ex 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 0 → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ (𝑃𝑘)))
119110, 118jaoi 853 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ (𝑃𝑘)))
120103, 119sylbi 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ ℕ0 → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ (𝑃𝑘)))
121120impcom 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → ¬ 2 ∥ (𝑃𝑘))
122 ioran 980 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (¬ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃𝑘)) ↔ (¬ 2 ∥ (-1↑𝑘) ∧ ¬ 2 ∥ (𝑃𝑘)))
123102, 121, 122sylanbrc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → ¬ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃𝑘)))
12428, 31mpan 688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℤ)
125124adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℤ)
1266, 7, 763syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ0)
127126adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ ℕ0)
128 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
129127, 128nn0expcld 13610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ0)
130129nn0zd 12088 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℤ)
131 euclemma 16060 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℙ ∧ (-1↑𝑘) ∈ ℤ ∧ (𝑃𝑘) ∈ ℤ) → (2 ∥ ((-1↑𝑘) · (𝑃𝑘)) ↔ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃𝑘))))
13247, 125, 130, 131mp3an2i 1462 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → (2 ∥ ((-1↑𝑘) · (𝑃𝑘)) ↔ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃𝑘))))
133123, 132mtbird 327 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘)))
134133ex 415 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ (ℙ ∖ {2}) → (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘))))
1351343ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘))))
136135ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘))))
137136, 30impel 508 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘)))
138 nnm1nn0 11941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
139 hashfz0 13796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 − 1) ∈ ℕ0 → (♯‘(0...(𝑀 − 1))) = ((𝑀 − 1) + 1))
140138, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℕ → (♯‘(0...(𝑀 − 1))) = ((𝑀 − 1) + 1))
141 nncn 11649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
142 npcan1 11068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀)
143141, 142syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℕ → ((𝑀 − 1) + 1) = 𝑀)
144140, 143eqtr2d 2860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℕ → 𝑀 = (♯‘(0...(𝑀 − 1))))
1451443ad2ant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 = (♯‘(0...(𝑀 − 1))))
146145adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑀 = 1) → 𝑀 = (♯‘(0...(𝑀 − 1))))
147146breq2d 5081 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑀 = 1) → (2 ∥ 𝑀 ↔ 2 ∥ (♯‘(0...(𝑀 − 1)))))
148147notbid 320 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑀 = 1) → (¬ 2 ∥ 𝑀 ↔ ¬ 2 ∥ (♯‘(0...(𝑀 − 1)))))
149148biimpd 231 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑀 = 1) → (¬ 2 ∥ 𝑀 → ¬ 2 ∥ (♯‘(0...(𝑀 − 1)))))
150149impr 457 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → ¬ 2 ∥ (♯‘(0...(𝑀 − 1))))
151150adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → ¬ 2 ∥ (♯‘(0...(𝑀 − 1))))
15273, 86, 137, 151oddsumodd 15744 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → ¬ 2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)))
153152pm2.21d 121 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) → 𝑀 = 1))
154153adantr 483 . . . . . . . . . . . . . . . . . . 19 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) → 𝑀 = 1))
15572, 154sylbird 262 . . . . . . . . . . . . . . . . . 18 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)) → (2 ∥ (2↑𝑛) → 𝑀 = 1))
156155ex 415 . . . . . . . . . . . . . . . . 17 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛) → (2 ∥ (2↑𝑛) → 𝑀 = 1)))
15770, 156mpid 44 . . . . . . . . . . . . . . . 16 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛) → 𝑀 = 1))
158157rexlimdva 3287 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → (∃𝑛 ∈ ℕ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛) → 𝑀 = 1))
15966, 158syld 47 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))
160159exp32 423 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ 𝑀 = 1 → (¬ 2 ∥ 𝑀 → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))))
161160com12 32 . . . . . . . . . . . 12 𝑀 = 1 → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ 2 ∥ 𝑀 → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))))
162161impd 413 . . . . . . . . . . 11 𝑀 = 1 → (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)))
16346, 162pm2.61i 184 . . . . . . . . . 10 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))
164163adantr 483 . . . . . . . . 9 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))
16545, 164sylbid 242 . . . . . . . 8 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) → 𝑀 = 1))
16643, 165mpd 15 . . . . . . 7 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → 𝑀 = 1)
167166ex 415 . . . . . 6 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁) → 𝑀 = 1))
16822, 167sylbid 242 . . . . 5 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((𝑃𝑀) + 1) = (2↑𝑁) → 𝑀 = 1))
16917, 168sylbid 242 . . . 4 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))
170169ex 415 . . 3 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ 2 ∥ 𝑀 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
171170adantld 493 . 2 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
1721713imp 1107 1 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wrex 3142  cdif 3936  {csn 4570  {cpr 4572   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  cmin 10873  -cneg 10874  cn 11641  2c2 11695  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  cexp 13432  chash 13693  Σcsu 15045  cdvds 15610  cprime 16018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-dvds 15611  df-gcd 15847  df-prm 16019  df-pc 16177
This theorem is referenced by:  lighneal  43783
  Copyright terms: Public domain W3C validator