MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgsoddprmlem2 Structured version   Visualization version   GIF version

Theorem 2lgsoddprmlem2 27296
Description: Lemma 2 for 2lgsoddprm 27303. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))

Proof of Theorem 2lgsoddprmlem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 8nn 12257 . . . . . 6 8 ∈ ℕ
2 nnrp 12939 . . . . . 6 (8 ∈ ℕ → 8 ∈ ℝ+)
31, 2ax-mp 5 . . . . 5 8 ∈ ℝ+
4 eqcom 2736 . . . . . 6 (𝑅 = (𝑁 mod 8) ↔ (𝑁 mod 8) = 𝑅)
5 modmuladdim 13855 . . . . . 6 ((𝑁 ∈ ℤ ∧ 8 ∈ ℝ+) → ((𝑁 mod 8) = 𝑅 → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
64, 5biimtrid 242 . . . . 5 ((𝑁 ∈ ℤ ∧ 8 ∈ ℝ+) → (𝑅 = (𝑁 mod 8) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
73, 6mpan2 691 . . . 4 (𝑁 ∈ ℤ → (𝑅 = (𝑁 mod 8) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
87imp 406 . . 3 ((𝑁 ∈ ℤ ∧ 𝑅 = (𝑁 mod 8)) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅))
983adant2 1131 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅))
10 zcn 12510 . . . . . . . 8 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
11 8cn 12259 . . . . . . . . 9 8 ∈ ℂ
1211a1i 11 . . . . . . . 8 (𝑘 ∈ ℤ → 8 ∈ ℂ)
1310, 12mulcomd 11171 . . . . . . 7 (𝑘 ∈ ℤ → (𝑘 · 8) = (8 · 𝑘))
1413adantl 481 . . . . . 6 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑘 · 8) = (8 · 𝑘))
1514oveq1d 7384 . . . . 5 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 8) + 𝑅) = ((8 · 𝑘) + 𝑅))
1615eqeq2d 2740 . . . 4 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((𝑘 · 8) + 𝑅) ↔ 𝑁 = ((8 · 𝑘) + 𝑅)))
17 simpr 484 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
1817adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑘 ∈ ℤ)
19 id 22 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
201a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 8 ∈ ℕ)
2119, 20zmodcld 13830 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 mod 8) ∈ ℕ0)
2221nn0zd 12531 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 mod 8) ∈ ℤ)
23223ad2ant1 1133 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℤ)
24 eleq1 2816 . . . . . . . . . . . 12 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℤ ↔ (𝑁 mod 8) ∈ ℤ))
25243ad2ant3 1135 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℤ ↔ (𝑁 mod 8) ∈ ℤ))
2623, 25mpbird 257 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℤ)
2726adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → 𝑅 ∈ ℤ)
2827adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑅 ∈ ℤ)
29 simpr 484 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑁 = ((8 · 𝑘) + 𝑅))
30 2lgsoddprmlem1 27295 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8)))
3118, 28, 29, 30syl3anc 1373 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8)))
3231breq2d 5114 . . . . . 6 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
33 2z 12541 . . . . . . 7 2 ∈ ℤ
34 simp1 1136 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑁 ∈ ℤ)
351a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 8 ∈ ℕ)
3634, 35zmodcld 13830 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℕ0)
3736nn0red 12480 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℝ)
38 eleq1 2816 . . . . . . . . . . 11 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℝ ↔ (𝑁 mod 8) ∈ ℝ))
39383ad2ant3 1135 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℝ ↔ (𝑁 mod 8) ∈ ℝ))
4037, 39mpbird 257 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℝ)
41 resqcl 14065 . . . . . . . . . . 11 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
42 peano2rem 11465 . . . . . . . . . . 11 ((𝑅↑2) ∈ ℝ → ((𝑅↑2) − 1) ∈ ℝ)
4341, 42syl 17 . . . . . . . . . 10 (𝑅 ∈ ℝ → ((𝑅↑2) − 1) ∈ ℝ)
44 8re 12258 . . . . . . . . . . 11 8 ∈ ℝ
4544a1i 11 . . . . . . . . . 10 (𝑅 ∈ ℝ → 8 ∈ ℝ)
46 8pos 12274 . . . . . . . . . . . 12 0 < 8
4744, 46gt0ne0ii 11690 . . . . . . . . . . 11 8 ≠ 0
4847a1i 11 . . . . . . . . . 10 (𝑅 ∈ ℝ → 8 ≠ 0)
4943, 45, 48redivcld 11986 . . . . . . . . 9 (𝑅 ∈ ℝ → (((𝑅↑2) − 1) / 8) ∈ ℝ)
5040, 49syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (((𝑅↑2) − 1) / 8) ∈ ℝ)
5150adantr 480 . . . . . . 7 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (((𝑅↑2) − 1) / 8) ∈ ℝ)
52 eleq1 2816 . . . . . . . . . . . 12 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℕ0 ↔ (𝑁 mod 8) ∈ ℕ0))
53523ad2ant3 1135 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℕ0 ↔ (𝑁 mod 8) ∈ ℕ0))
5436, 53mpbird 257 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℕ0)
55 nn0z 12530 . . . . . . . . . . 11 (𝑅 ∈ ℕ0𝑅 ∈ ℤ)
561nnzi 12533 . . . . . . . . . . . . . . . 16 8 ∈ ℤ
5756a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 8 ∈ ℤ)
58 zsqcl 14070 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (𝑘↑2) ∈ ℤ)
5958adantl 481 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘↑2) ∈ ℤ)
6057, 59zmulcld 12620 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) ∈ ℤ)
6133a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∈ ℤ)
62 zmulcl 12558 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℤ)
6362ancoms 458 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℤ)
6461, 63zmulcld 12620 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 · (𝑘 · 𝑅)) ∈ ℤ)
6560, 64zaddcld 12618 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ)
66 4z 12543 . . . . . . . . . . . . . . . . . . 19 4 ∈ ℤ
6766a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 4 ∈ ℤ)
6867, 59zmulcld 12620 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (4 · (𝑘↑2)) ∈ ℤ)
6968, 63zaddcld 12618 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ)
7061, 69jca 511 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 ∈ ℤ ∧ ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ))
71 dvdsmul1 16223 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ) → 2 ∥ (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
7270, 71syl 17 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
73 4t2e8 12325 . . . . . . . . . . . . . . . . . . . 20 (4 · 2) = 8
74 4cn 12247 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℂ
75 2cn 12237 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℂ
7674, 75mulcomi 11158 . . . . . . . . . . . . . . . . . . . 20 (4 · 2) = (2 · 4)
7773, 76eqtr3i 2754 . . . . . . . . . . . . . . . . . . 19 8 = (2 · 4)
7877a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 8 = (2 · 4))
7978oveq1d 7384 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) = ((2 · 4) · (𝑘↑2)))
8075a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∈ ℂ)
8174a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 4 ∈ ℂ)
8258zcnd 12615 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (𝑘↑2) ∈ ℂ)
8382adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘↑2) ∈ ℂ)
8480, 81, 83mulassd 11173 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((2 · 4) · (𝑘↑2)) = (2 · (4 · (𝑘↑2))))
8579, 84eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) = (2 · (4 · (𝑘↑2))))
8685oveq1d 7384 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) = ((2 · (4 · (𝑘↑2))) + (2 · (𝑘 · 𝑅))))
8768zcnd 12615 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (4 · (𝑘↑2)) ∈ ℂ)
8862zcnd 12615 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℂ)
8988ancoms 458 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℂ)
9080, 87, 89adddid 11174 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))) = ((2 · (4 · (𝑘↑2))) + (2 · (𝑘 · 𝑅))))
9186, 90eqtr4d 2767 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) = (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
9272, 91breqtrrd 5130 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))
9365, 92jca 511 . . . . . . . . . . . 12 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
9493ex 412 . . . . . . . . . . 11 (𝑅 ∈ ℤ → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))))
9555, 94syl 17 . . . . . . . . . 10 (𝑅 ∈ ℕ0 → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))))
9654, 95syl 17 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))))
9796imp 406 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
9897adantr 480 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
99 dvdsaddre2b 16253 . . . . . . 7 ((2 ∈ ℤ ∧ (((𝑅↑2) − 1) / 8) ∈ ℝ ∧ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
10033, 51, 98, 99mp3an2ani 1470 . . . . . 6 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
10132, 100bitr4d 282 . . . . 5 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))
102101ex 412 . . . 4 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((8 · 𝑘) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
10316, 102sylbid 240 . . 3 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((𝑘 · 8) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
104103rexlimdva 3134 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
1059, 104mpd 15 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  4c4 12219  8c8 12223  0cn0 12418  cz 12505  +crp 12927   mod cmo 13807  cexp 14002  cdvds 16198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-dvds 16199
This theorem is referenced by:  2lgsoddprmlem4  27302
  Copyright terms: Public domain W3C validator