MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgsoddprmlem2 Structured version   Visualization version   GIF version

Theorem 2lgsoddprmlem2 27320
Description: Lemma 2 for 2lgsoddprm 27327. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))

Proof of Theorem 2lgsoddprmlem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 8nn 12281 . . . . . 6 8 ∈ ℕ
2 nnrp 12963 . . . . . 6 (8 ∈ ℕ → 8 ∈ ℝ+)
31, 2ax-mp 5 . . . . 5 8 ∈ ℝ+
4 eqcom 2736 . . . . . 6 (𝑅 = (𝑁 mod 8) ↔ (𝑁 mod 8) = 𝑅)
5 modmuladdim 13879 . . . . . 6 ((𝑁 ∈ ℤ ∧ 8 ∈ ℝ+) → ((𝑁 mod 8) = 𝑅 → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
64, 5biimtrid 242 . . . . 5 ((𝑁 ∈ ℤ ∧ 8 ∈ ℝ+) → (𝑅 = (𝑁 mod 8) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
73, 6mpan2 691 . . . 4 (𝑁 ∈ ℤ → (𝑅 = (𝑁 mod 8) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
87imp 406 . . 3 ((𝑁 ∈ ℤ ∧ 𝑅 = (𝑁 mod 8)) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅))
983adant2 1131 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅))
10 zcn 12534 . . . . . . . 8 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
11 8cn 12283 . . . . . . . . 9 8 ∈ ℂ
1211a1i 11 . . . . . . . 8 (𝑘 ∈ ℤ → 8 ∈ ℂ)
1310, 12mulcomd 11195 . . . . . . 7 (𝑘 ∈ ℤ → (𝑘 · 8) = (8 · 𝑘))
1413adantl 481 . . . . . 6 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑘 · 8) = (8 · 𝑘))
1514oveq1d 7402 . . . . 5 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 8) + 𝑅) = ((8 · 𝑘) + 𝑅))
1615eqeq2d 2740 . . . 4 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((𝑘 · 8) + 𝑅) ↔ 𝑁 = ((8 · 𝑘) + 𝑅)))
17 simpr 484 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
1817adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑘 ∈ ℤ)
19 id 22 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
201a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 8 ∈ ℕ)
2119, 20zmodcld 13854 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 mod 8) ∈ ℕ0)
2221nn0zd 12555 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 mod 8) ∈ ℤ)
23223ad2ant1 1133 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℤ)
24 eleq1 2816 . . . . . . . . . . . 12 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℤ ↔ (𝑁 mod 8) ∈ ℤ))
25243ad2ant3 1135 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℤ ↔ (𝑁 mod 8) ∈ ℤ))
2623, 25mpbird 257 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℤ)
2726adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → 𝑅 ∈ ℤ)
2827adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑅 ∈ ℤ)
29 simpr 484 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑁 = ((8 · 𝑘) + 𝑅))
30 2lgsoddprmlem1 27319 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8)))
3118, 28, 29, 30syl3anc 1373 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8)))
3231breq2d 5119 . . . . . 6 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
33 2z 12565 . . . . . . 7 2 ∈ ℤ
34 simp1 1136 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑁 ∈ ℤ)
351a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 8 ∈ ℕ)
3634, 35zmodcld 13854 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℕ0)
3736nn0red 12504 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℝ)
38 eleq1 2816 . . . . . . . . . . 11 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℝ ↔ (𝑁 mod 8) ∈ ℝ))
39383ad2ant3 1135 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℝ ↔ (𝑁 mod 8) ∈ ℝ))
4037, 39mpbird 257 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℝ)
41 resqcl 14089 . . . . . . . . . . 11 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
42 peano2rem 11489 . . . . . . . . . . 11 ((𝑅↑2) ∈ ℝ → ((𝑅↑2) − 1) ∈ ℝ)
4341, 42syl 17 . . . . . . . . . 10 (𝑅 ∈ ℝ → ((𝑅↑2) − 1) ∈ ℝ)
44 8re 12282 . . . . . . . . . . 11 8 ∈ ℝ
4544a1i 11 . . . . . . . . . 10 (𝑅 ∈ ℝ → 8 ∈ ℝ)
46 8pos 12298 . . . . . . . . . . . 12 0 < 8
4744, 46gt0ne0ii 11714 . . . . . . . . . . 11 8 ≠ 0
4847a1i 11 . . . . . . . . . 10 (𝑅 ∈ ℝ → 8 ≠ 0)
4943, 45, 48redivcld 12010 . . . . . . . . 9 (𝑅 ∈ ℝ → (((𝑅↑2) − 1) / 8) ∈ ℝ)
5040, 49syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (((𝑅↑2) − 1) / 8) ∈ ℝ)
5150adantr 480 . . . . . . 7 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (((𝑅↑2) − 1) / 8) ∈ ℝ)
52 eleq1 2816 . . . . . . . . . . . 12 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℕ0 ↔ (𝑁 mod 8) ∈ ℕ0))
53523ad2ant3 1135 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℕ0 ↔ (𝑁 mod 8) ∈ ℕ0))
5436, 53mpbird 257 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℕ0)
55 nn0z 12554 . . . . . . . . . . 11 (𝑅 ∈ ℕ0𝑅 ∈ ℤ)
561nnzi 12557 . . . . . . . . . . . . . . . 16 8 ∈ ℤ
5756a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 8 ∈ ℤ)
58 zsqcl 14094 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (𝑘↑2) ∈ ℤ)
5958adantl 481 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘↑2) ∈ ℤ)
6057, 59zmulcld 12644 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) ∈ ℤ)
6133a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∈ ℤ)
62 zmulcl 12582 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℤ)
6362ancoms 458 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℤ)
6461, 63zmulcld 12644 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 · (𝑘 · 𝑅)) ∈ ℤ)
6560, 64zaddcld 12642 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ)
66 4z 12567 . . . . . . . . . . . . . . . . . . 19 4 ∈ ℤ
6766a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 4 ∈ ℤ)
6867, 59zmulcld 12644 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (4 · (𝑘↑2)) ∈ ℤ)
6968, 63zaddcld 12642 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ)
7061, 69jca 511 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 ∈ ℤ ∧ ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ))
71 dvdsmul1 16247 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ) → 2 ∥ (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
7270, 71syl 17 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
73 4t2e8 12349 . . . . . . . . . . . . . . . . . . . 20 (4 · 2) = 8
74 4cn 12271 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℂ
75 2cn 12261 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℂ
7674, 75mulcomi 11182 . . . . . . . . . . . . . . . . . . . 20 (4 · 2) = (2 · 4)
7773, 76eqtr3i 2754 . . . . . . . . . . . . . . . . . . 19 8 = (2 · 4)
7877a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 8 = (2 · 4))
7978oveq1d 7402 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) = ((2 · 4) · (𝑘↑2)))
8075a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∈ ℂ)
8174a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 4 ∈ ℂ)
8258zcnd 12639 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (𝑘↑2) ∈ ℂ)
8382adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘↑2) ∈ ℂ)
8480, 81, 83mulassd 11197 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((2 · 4) · (𝑘↑2)) = (2 · (4 · (𝑘↑2))))
8579, 84eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) = (2 · (4 · (𝑘↑2))))
8685oveq1d 7402 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) = ((2 · (4 · (𝑘↑2))) + (2 · (𝑘 · 𝑅))))
8768zcnd 12639 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (4 · (𝑘↑2)) ∈ ℂ)
8862zcnd 12639 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℂ)
8988ancoms 458 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℂ)
9080, 87, 89adddid 11198 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))) = ((2 · (4 · (𝑘↑2))) + (2 · (𝑘 · 𝑅))))
9186, 90eqtr4d 2767 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) = (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
9272, 91breqtrrd 5135 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))
9365, 92jca 511 . . . . . . . . . . . 12 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
9493ex 412 . . . . . . . . . . 11 (𝑅 ∈ ℤ → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))))
9555, 94syl 17 . . . . . . . . . 10 (𝑅 ∈ ℕ0 → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))))
9654, 95syl 17 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))))
9796imp 406 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
9897adantr 480 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
99 dvdsaddre2b 16277 . . . . . . 7 ((2 ∈ ℤ ∧ (((𝑅↑2) − 1) / 8) ∈ ℝ ∧ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
10033, 51, 98, 99mp3an2ani 1470 . . . . . 6 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
10132, 100bitr4d 282 . . . . 5 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))
102101ex 412 . . . 4 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((8 · 𝑘) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
10316, 102sylbid 240 . . 3 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((𝑘 · 8) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
104103rexlimdva 3134 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
1059, 104mpd 15 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  4c4 12243  8c8 12247  0cn0 12442  cz 12529  +crp 12951   mod cmo 13831  cexp 14026  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-dvds 16223
This theorem is referenced by:  2lgsoddprmlem4  27326
  Copyright terms: Public domain W3C validator