MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgsoddprmlem2 Structured version   Visualization version   GIF version

Theorem 2lgsoddprmlem2 25991
Description: Lemma 2 for 2lgsoddprm 25998. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))

Proof of Theorem 2lgsoddprmlem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 8nn 11720 . . . . . 6 8 ∈ ℕ
2 nnrp 12388 . . . . . 6 (8 ∈ ℕ → 8 ∈ ℝ+)
31, 2ax-mp 5 . . . . 5 8 ∈ ℝ+
4 eqcom 2829 . . . . . 6 (𝑅 = (𝑁 mod 8) ↔ (𝑁 mod 8) = 𝑅)
5 modmuladdim 13277 . . . . . 6 ((𝑁 ∈ ℤ ∧ 8 ∈ ℝ+) → ((𝑁 mod 8) = 𝑅 → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
64, 5syl5bi 245 . . . . 5 ((𝑁 ∈ ℤ ∧ 8 ∈ ℝ+) → (𝑅 = (𝑁 mod 8) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
73, 6mpan2 690 . . . 4 (𝑁 ∈ ℤ → (𝑅 = (𝑁 mod 8) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
87imp 410 . . 3 ((𝑁 ∈ ℤ ∧ 𝑅 = (𝑁 mod 8)) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅))
983adant2 1128 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅))
10 zcn 11974 . . . . . . . 8 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
11 8cn 11722 . . . . . . . . 9 8 ∈ ℂ
1211a1i 11 . . . . . . . 8 (𝑘 ∈ ℤ → 8 ∈ ℂ)
1310, 12mulcomd 10651 . . . . . . 7 (𝑘 ∈ ℤ → (𝑘 · 8) = (8 · 𝑘))
1413adantl 485 . . . . . 6 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑘 · 8) = (8 · 𝑘))
1514oveq1d 7155 . . . . 5 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 8) + 𝑅) = ((8 · 𝑘) + 𝑅))
1615eqeq2d 2833 . . . 4 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((𝑘 · 8) + 𝑅) ↔ 𝑁 = ((8 · 𝑘) + 𝑅)))
17 simpr 488 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
1817adantr 484 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑘 ∈ ℤ)
19 id 22 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
201a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 8 ∈ ℕ)
2119, 20zmodcld 13255 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 mod 8) ∈ ℕ0)
2221nn0zd 12073 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 mod 8) ∈ ℤ)
23223ad2ant1 1130 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℤ)
24 eleq1 2901 . . . . . . . . . . . 12 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℤ ↔ (𝑁 mod 8) ∈ ℤ))
25243ad2ant3 1132 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℤ ↔ (𝑁 mod 8) ∈ ℤ))
2623, 25mpbird 260 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℤ)
2726adantr 484 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → 𝑅 ∈ ℤ)
2827adantr 484 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑅 ∈ ℤ)
29 simpr 488 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑁 = ((8 · 𝑘) + 𝑅))
30 2lgsoddprmlem1 25990 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8)))
3118, 28, 29, 30syl3anc 1368 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8)))
3231breq2d 5054 . . . . . 6 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
33 2z 12002 . . . . . . 7 2 ∈ ℤ
34 simp1 1133 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑁 ∈ ℤ)
351a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 8 ∈ ℕ)
3634, 35zmodcld 13255 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℕ0)
3736nn0red 11944 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℝ)
38 eleq1 2901 . . . . . . . . . . 11 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℝ ↔ (𝑁 mod 8) ∈ ℝ))
39383ad2ant3 1132 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℝ ↔ (𝑁 mod 8) ∈ ℝ))
4037, 39mpbird 260 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℝ)
41 resqcl 13486 . . . . . . . . . . 11 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
42 peano2rem 10942 . . . . . . . . . . 11 ((𝑅↑2) ∈ ℝ → ((𝑅↑2) − 1) ∈ ℝ)
4341, 42syl 17 . . . . . . . . . 10 (𝑅 ∈ ℝ → ((𝑅↑2) − 1) ∈ ℝ)
44 8re 11721 . . . . . . . . . . 11 8 ∈ ℝ
4544a1i 11 . . . . . . . . . 10 (𝑅 ∈ ℝ → 8 ∈ ℝ)
46 8pos 11737 . . . . . . . . . . . 12 0 < 8
4744, 46gt0ne0ii 11165 . . . . . . . . . . 11 8 ≠ 0
4847a1i 11 . . . . . . . . . 10 (𝑅 ∈ ℝ → 8 ≠ 0)
4943, 45, 48redivcld 11457 . . . . . . . . 9 (𝑅 ∈ ℝ → (((𝑅↑2) − 1) / 8) ∈ ℝ)
5040, 49syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (((𝑅↑2) − 1) / 8) ∈ ℝ)
5150adantr 484 . . . . . . 7 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (((𝑅↑2) − 1) / 8) ∈ ℝ)
52 eleq1 2901 . . . . . . . . . . . 12 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℕ0 ↔ (𝑁 mod 8) ∈ ℕ0))
53523ad2ant3 1132 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℕ0 ↔ (𝑁 mod 8) ∈ ℕ0))
5436, 53mpbird 260 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℕ0)
55 nn0z 11993 . . . . . . . . . . 11 (𝑅 ∈ ℕ0𝑅 ∈ ℤ)
561nnzi 11994 . . . . . . . . . . . . . . . 16 8 ∈ ℤ
5756a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 8 ∈ ℤ)
58 zsqcl 13490 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (𝑘↑2) ∈ ℤ)
5958adantl 485 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘↑2) ∈ ℤ)
6057, 59zmulcld 12081 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) ∈ ℤ)
6133a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∈ ℤ)
62 zmulcl 12019 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℤ)
6362ancoms 462 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℤ)
6461, 63zmulcld 12081 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 · (𝑘 · 𝑅)) ∈ ℤ)
6560, 64zaddcld 12079 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ)
66 4z 12004 . . . . . . . . . . . . . . . . . . 19 4 ∈ ℤ
6766a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 4 ∈ ℤ)
6867, 59zmulcld 12081 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (4 · (𝑘↑2)) ∈ ℤ)
6968, 63zaddcld 12079 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ)
7061, 69jca 515 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 ∈ ℤ ∧ ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ))
71 dvdsmul1 15622 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ) → 2 ∥ (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
7270, 71syl 17 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
73 4t2e8 11793 . . . . . . . . . . . . . . . . . . . 20 (4 · 2) = 8
74 4cn 11710 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℂ
75 2cn 11700 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℂ
7674, 75mulcomi 10638 . . . . . . . . . . . . . . . . . . . 20 (4 · 2) = (2 · 4)
7773, 76eqtr3i 2847 . . . . . . . . . . . . . . . . . . 19 8 = (2 · 4)
7877a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 8 = (2 · 4))
7978oveq1d 7155 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) = ((2 · 4) · (𝑘↑2)))
8075a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∈ ℂ)
8174a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 4 ∈ ℂ)
8258zcnd 12076 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (𝑘↑2) ∈ ℂ)
8382adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘↑2) ∈ ℂ)
8480, 81, 83mulassd 10653 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((2 · 4) · (𝑘↑2)) = (2 · (4 · (𝑘↑2))))
8579, 84eqtrd 2857 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) = (2 · (4 · (𝑘↑2))))
8685oveq1d 7155 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) = ((2 · (4 · (𝑘↑2))) + (2 · (𝑘 · 𝑅))))
8768zcnd 12076 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (4 · (𝑘↑2)) ∈ ℂ)
8862zcnd 12076 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℂ)
8988ancoms 462 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℂ)
9080, 87, 89adddid 10654 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))) = ((2 · (4 · (𝑘↑2))) + (2 · (𝑘 · 𝑅))))
9186, 90eqtr4d 2860 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) = (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
9272, 91breqtrrd 5070 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))
9365, 92jca 515 . . . . . . . . . . . 12 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
9493ex 416 . . . . . . . . . . 11 (𝑅 ∈ ℤ → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))))
9555, 94syl 17 . . . . . . . . . 10 (𝑅 ∈ ℕ0 → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))))
9654, 95syl 17 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))))
9796imp 410 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
9897adantr 484 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
99 dvdsaddre2b 15648 . . . . . . 7 ((2 ∈ ℤ ∧ (((𝑅↑2) − 1) / 8) ∈ ℝ ∧ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
10033, 51, 98, 99mp3an2ani 1465 . . . . . 6 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
10132, 100bitr4d 285 . . . . 5 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))
102101ex 416 . . . 4 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((8 · 𝑘) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
10316, 102sylbid 243 . . 3 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((𝑘 · 8) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
104103rexlimdva 3270 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
1059, 104mpd 15 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011  wrex 3131   class class class wbr 5042  (class class class)co 7140  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  4c4 11682  8c8 11686  0cn0 11885  cz 11969  +crp 12377   mod cmo 13232  cexp 13425  cdvds 15598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-dvds 15599
This theorem is referenced by:  2lgsoddprmlem4  25997
  Copyright terms: Public domain W3C validator