MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgsoddprmlem2 Structured version   Visualization version   GIF version

Theorem 2lgsoddprmlem2 27327
Description: Lemma 2 for 2lgsoddprm 27334. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))

Proof of Theorem 2lgsoddprmlem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 8nn 12288 . . . . . 6 8 ∈ ℕ
2 nnrp 12970 . . . . . 6 (8 ∈ ℕ → 8 ∈ ℝ+)
31, 2ax-mp 5 . . . . 5 8 ∈ ℝ+
4 eqcom 2737 . . . . . 6 (𝑅 = (𝑁 mod 8) ↔ (𝑁 mod 8) = 𝑅)
5 modmuladdim 13886 . . . . . 6 ((𝑁 ∈ ℤ ∧ 8 ∈ ℝ+) → ((𝑁 mod 8) = 𝑅 → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
64, 5biimtrid 242 . . . . 5 ((𝑁 ∈ ℤ ∧ 8 ∈ ℝ+) → (𝑅 = (𝑁 mod 8) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
73, 6mpan2 691 . . . 4 (𝑁 ∈ ℤ → (𝑅 = (𝑁 mod 8) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅)))
87imp 406 . . 3 ((𝑁 ∈ ℤ ∧ 𝑅 = (𝑁 mod 8)) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅))
983adant2 1131 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → ∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅))
10 zcn 12541 . . . . . . . 8 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
11 8cn 12290 . . . . . . . . 9 8 ∈ ℂ
1211a1i 11 . . . . . . . 8 (𝑘 ∈ ℤ → 8 ∈ ℂ)
1310, 12mulcomd 11202 . . . . . . 7 (𝑘 ∈ ℤ → (𝑘 · 8) = (8 · 𝑘))
1413adantl 481 . . . . . 6 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑘 · 8) = (8 · 𝑘))
1514oveq1d 7405 . . . . 5 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 8) + 𝑅) = ((8 · 𝑘) + 𝑅))
1615eqeq2d 2741 . . . 4 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((𝑘 · 8) + 𝑅) ↔ 𝑁 = ((8 · 𝑘) + 𝑅)))
17 simpr 484 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
1817adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑘 ∈ ℤ)
19 id 22 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
201a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 8 ∈ ℕ)
2119, 20zmodcld 13861 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 mod 8) ∈ ℕ0)
2221nn0zd 12562 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 mod 8) ∈ ℤ)
23223ad2ant1 1133 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℤ)
24 eleq1 2817 . . . . . . . . . . . 12 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℤ ↔ (𝑁 mod 8) ∈ ℤ))
25243ad2ant3 1135 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℤ ↔ (𝑁 mod 8) ∈ ℤ))
2623, 25mpbird 257 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℤ)
2726adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → 𝑅 ∈ ℤ)
2827adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑅 ∈ ℤ)
29 simpr 484 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → 𝑁 = ((8 · 𝑘) + 𝑅))
30 2lgsoddprmlem1 27326 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8)))
3118, 28, 29, 30syl3anc 1373 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8)))
3231breq2d 5122 . . . . . 6 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
33 2z 12572 . . . . . . 7 2 ∈ ℤ
34 simp1 1136 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑁 ∈ ℤ)
351a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 8 ∈ ℕ)
3634, 35zmodcld 13861 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℕ0)
3736nn0red 12511 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑁 mod 8) ∈ ℝ)
38 eleq1 2817 . . . . . . . . . . 11 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℝ ↔ (𝑁 mod 8) ∈ ℝ))
39383ad2ant3 1135 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℝ ↔ (𝑁 mod 8) ∈ ℝ))
4037, 39mpbird 257 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℝ)
41 resqcl 14096 . . . . . . . . . . 11 (𝑅 ∈ ℝ → (𝑅↑2) ∈ ℝ)
42 peano2rem 11496 . . . . . . . . . . 11 ((𝑅↑2) ∈ ℝ → ((𝑅↑2) − 1) ∈ ℝ)
4341, 42syl 17 . . . . . . . . . 10 (𝑅 ∈ ℝ → ((𝑅↑2) − 1) ∈ ℝ)
44 8re 12289 . . . . . . . . . . 11 8 ∈ ℝ
4544a1i 11 . . . . . . . . . 10 (𝑅 ∈ ℝ → 8 ∈ ℝ)
46 8pos 12305 . . . . . . . . . . . 12 0 < 8
4744, 46gt0ne0ii 11721 . . . . . . . . . . 11 8 ≠ 0
4847a1i 11 . . . . . . . . . 10 (𝑅 ∈ ℝ → 8 ≠ 0)
4943, 45, 48redivcld 12017 . . . . . . . . 9 (𝑅 ∈ ℝ → (((𝑅↑2) − 1) / 8) ∈ ℝ)
5040, 49syl 17 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (((𝑅↑2) − 1) / 8) ∈ ℝ)
5150adantr 480 . . . . . . 7 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (((𝑅↑2) − 1) / 8) ∈ ℝ)
52 eleq1 2817 . . . . . . . . . . . 12 (𝑅 = (𝑁 mod 8) → (𝑅 ∈ ℕ0 ↔ (𝑁 mod 8) ∈ ℕ0))
53523ad2ant3 1135 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑅 ∈ ℕ0 ↔ (𝑁 mod 8) ∈ ℕ0))
5436, 53mpbird 257 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → 𝑅 ∈ ℕ0)
55 nn0z 12561 . . . . . . . . . . 11 (𝑅 ∈ ℕ0𝑅 ∈ ℤ)
561nnzi 12564 . . . . . . . . . . . . . . . 16 8 ∈ ℤ
5756a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 8 ∈ ℤ)
58 zsqcl 14101 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (𝑘↑2) ∈ ℤ)
5958adantl 481 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘↑2) ∈ ℤ)
6057, 59zmulcld 12651 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) ∈ ℤ)
6133a1i 11 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∈ ℤ)
62 zmulcl 12589 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℤ)
6362ancoms 458 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℤ)
6461, 63zmulcld 12651 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 · (𝑘 · 𝑅)) ∈ ℤ)
6560, 64zaddcld 12649 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ)
66 4z 12574 . . . . . . . . . . . . . . . . . . 19 4 ∈ ℤ
6766a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 4 ∈ ℤ)
6867, 59zmulcld 12651 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (4 · (𝑘↑2)) ∈ ℤ)
6968, 63zaddcld 12649 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ)
7061, 69jca 511 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 ∈ ℤ ∧ ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ))
71 dvdsmul1 16254 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((4 · (𝑘↑2)) + (𝑘 · 𝑅)) ∈ ℤ) → 2 ∥ (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
7270, 71syl 17 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
73 4t2e8 12356 . . . . . . . . . . . . . . . . . . . 20 (4 · 2) = 8
74 4cn 12278 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℂ
75 2cn 12268 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℂ
7674, 75mulcomi 11189 . . . . . . . . . . . . . . . . . . . 20 (4 · 2) = (2 · 4)
7773, 76eqtr3i 2755 . . . . . . . . . . . . . . . . . . 19 8 = (2 · 4)
7877a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 8 = (2 · 4))
7978oveq1d 7405 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) = ((2 · 4) · (𝑘↑2)))
8075a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∈ ℂ)
8174a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 4 ∈ ℂ)
8258zcnd 12646 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℤ → (𝑘↑2) ∈ ℂ)
8382adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘↑2) ∈ ℂ)
8480, 81, 83mulassd 11204 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((2 · 4) · (𝑘↑2)) = (2 · (4 · (𝑘↑2))))
8579, 84eqtrd 2765 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (8 · (𝑘↑2)) = (2 · (4 · (𝑘↑2))))
8685oveq1d 7405 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) = ((2 · (4 · (𝑘↑2))) + (2 · (𝑘 · 𝑅))))
8768zcnd 12646 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (4 · (𝑘↑2)) ∈ ℂ)
8862zcnd 12646 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℂ)
8988ancoms 458 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 · 𝑅) ∈ ℂ)
9080, 87, 89adddid 11205 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))) = ((2 · (4 · (𝑘↑2))) + (2 · (𝑘 · 𝑅))))
9186, 90eqtr4d 2768 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) = (2 · ((4 · (𝑘↑2)) + (𝑘 · 𝑅))))
9272, 91breqtrrd 5138 . . . . . . . . . . . . 13 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))
9365, 92jca 511 . . . . . . . . . . . 12 ((𝑅 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
9493ex 412 . . . . . . . . . . 11 (𝑅 ∈ ℤ → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))))
9555, 94syl 17 . . . . . . . . . 10 (𝑅 ∈ ℕ0 → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))))
9654, 95syl 17 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (𝑘 ∈ ℤ → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))))
9796imp 406 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
9897adantr 480 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅)))))
99 dvdsaddre2b 16284 . . . . . . 7 ((2 ∈ ℤ ∧ (((𝑅↑2) − 1) / 8) ∈ ℝ ∧ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) ∈ ℤ ∧ 2 ∥ ((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))))) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
10033, 51, 98, 99mp3an2ani 1470 . . . . . 6 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 2 ∥ (((8 · (𝑘↑2)) + (2 · (𝑘 · 𝑅))) + (((𝑅↑2) − 1) / 8))))
10132, 100bitr4d 282 . . . . 5 ((((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) ∧ 𝑁 = ((8 · 𝑘) + 𝑅)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))
102101ex 412 . . . 4 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((8 · 𝑘) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
10316, 102sylbid 240 . . 3 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) ∧ 𝑘 ∈ ℤ) → (𝑁 = ((𝑘 · 8) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
104103rexlimdva 3135 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (∃𝑘 ∈ ℤ 𝑁 = ((𝑘 · 8) + 𝑅) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))))
1059, 104mpd 15 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  4c4 12250  8c8 12254  0cn0 12449  cz 12536  +crp 12958   mod cmo 13838  cexp 14033  cdvds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-dvds 16230
This theorem is referenced by:  2lgsoddprmlem4  27333
  Copyright terms: Public domain W3C validator