Proof of Theorem ig1pdvds
Step | Hyp | Ref
| Expression |
1 | | drngring 19998 |
. . . . . . 7
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
2 | | ig1pval.p |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝑅) |
3 | 2 | ply1ring 21419 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
4 | 1, 3 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ DivRing → 𝑃 ∈ Ring) |
5 | 4 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → 𝑃 ∈ Ring) |
6 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘𝑃) |
7 | | ig1pcl.u |
. . . . . . . 8
⊢ 𝑈 = (LIdeal‘𝑃) |
8 | 6, 7 | lidlss 20481 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑃)) |
9 | 8 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → 𝐼 ⊆ (Base‘𝑃)) |
10 | | ig1pval.g |
. . . . . . . 8
⊢ 𝐺 =
(idlGen1p‘𝑅) |
11 | 2, 10, 7 | ig1pcl 25340 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) ∈ 𝐼) |
12 | 11 | 3adant3 1131 |
. . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝐺‘𝐼) ∈ 𝐼) |
13 | 9, 12 | sseldd 3922 |
. . . . 5
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝐺‘𝐼) ∈ (Base‘𝑃)) |
14 | | ig1pdvds.d |
. . . . . 6
⊢ ∥ =
(∥r‘𝑃) |
15 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑃) = (0g‘𝑃) |
16 | 6, 14, 15 | dvdsr01 19897 |
. . . . 5
⊢ ((𝑃 ∈ Ring ∧ (𝐺‘𝐼) ∈ (Base‘𝑃)) → (𝐺‘𝐼) ∥
(0g‘𝑃)) |
17 | 5, 13, 16 | syl2anc 584 |
. . . 4
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝐺‘𝐼) ∥
(0g‘𝑃)) |
18 | 17 | adantr 481 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 = {(0g‘𝑃)}) → (𝐺‘𝐼) ∥
(0g‘𝑃)) |
19 | | eleq2 2827 |
. . . . . 6
⊢ (𝐼 = {(0g‘𝑃)} → (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ {(0g‘𝑃)})) |
20 | 19 | biimpac 479 |
. . . . 5
⊢ ((𝑋 ∈ 𝐼 ∧ 𝐼 = {(0g‘𝑃)}) → 𝑋 ∈ {(0g‘𝑃)}) |
21 | 20 | 3ad2antl3 1186 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 = {(0g‘𝑃)}) → 𝑋 ∈ {(0g‘𝑃)}) |
22 | | elsni 4578 |
. . . 4
⊢ (𝑋 ∈
{(0g‘𝑃)}
→ 𝑋 =
(0g‘𝑃)) |
23 | 21, 22 | syl 17 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 = {(0g‘𝑃)}) → 𝑋 = (0g‘𝑃)) |
24 | 18, 23 | breqtrrd 5102 |
. 2
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 = {(0g‘𝑃)}) → (𝐺‘𝐼) ∥ 𝑋) |
25 | | simpl1 1190 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → 𝑅 ∈ DivRing) |
26 | 25, 1 | syl 17 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → 𝑅 ∈ Ring) |
27 | | simpl2 1191 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → 𝐼 ∈ 𝑈) |
28 | 27, 8 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → 𝐼 ⊆ (Base‘𝑃)) |
29 | | simpl3 1192 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → 𝑋 ∈ 𝐼) |
30 | 28, 29 | sseldd 3922 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → 𝑋 ∈ (Base‘𝑃)) |
31 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → 𝐼 ≠ {(0g‘𝑃)}) |
32 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (
deg1 ‘𝑅) =
( deg1 ‘𝑅) |
33 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Monic1p‘𝑅) = (Monic1p‘𝑅) |
34 | 2, 10, 15, 7, 32, 33 | ig1pval3 25339 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ {(0g‘𝑃)}) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ (Monic1p‘𝑅) ∧ (( deg1
‘𝑅)‘(𝐺‘𝐼)) = inf((( deg1 ‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)})), ℝ, <
))) |
35 | 25, 27, 31, 34 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ (Monic1p‘𝑅) ∧ (( deg1
‘𝑅)‘(𝐺‘𝐼)) = inf((( deg1 ‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)})), ℝ, <
))) |
36 | 35 | simp2d 1142 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝐺‘𝐼) ∈ (Monic1p‘𝑅)) |
37 | | eqid 2738 |
. . . . . . . . 9
⊢
(Unic1p‘𝑅) = (Unic1p‘𝑅) |
38 | 37, 33 | mon1puc1p 25315 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝐺‘𝐼) ∈ (Monic1p‘𝑅)) → (𝐺‘𝐼) ∈ (Unic1p‘𝑅)) |
39 | 26, 36, 38 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝐺‘𝐼) ∈ (Unic1p‘𝑅)) |
40 | | eqid 2738 |
. . . . . . . 8
⊢
(rem1p‘𝑅) = (rem1p‘𝑅) |
41 | 40, 2, 6, 37, 32 | r1pdeglt 25323 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺‘𝐼) ∈ (Unic1p‘𝑅)) → (( deg1
‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))) < (( deg1 ‘𝑅)‘(𝐺‘𝐼))) |
42 | 26, 30, 39, 41 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (( deg1
‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))) < (( deg1 ‘𝑅)‘(𝐺‘𝐼))) |
43 | 35 | simp3d 1143 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (( deg1
‘𝑅)‘(𝐺‘𝐼)) = inf((( deg1 ‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)})), ℝ, <
)) |
44 | 42, 43 | breqtrd 5100 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (( deg1
‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))) < inf((( deg1 ‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)})), ℝ, <
)) |
45 | 32, 2, 6 | deg1xrf 25246 |
. . . . . . 7
⊢ (
deg1 ‘𝑅):(Base‘𝑃)⟶ℝ* |
46 | 35 | simp1d 1141 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝐺‘𝐼) ∈ 𝐼) |
47 | 28, 46 | sseldd 3922 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝐺‘𝐼) ∈ (Base‘𝑃)) |
48 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(quot1p‘𝑅) = (quot1p‘𝑅) |
49 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(.r‘𝑃) = (.r‘𝑃) |
50 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(-g‘𝑃) = (-g‘𝑃) |
51 | 40, 2, 6, 48, 49, 50 | r1pval 25321 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ (Base‘𝑃) ∧ (𝐺‘𝐼) ∈ (Base‘𝑃)) → (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) = (𝑋(-g‘𝑃)((𝑋(quot1p‘𝑅)(𝐺‘𝐼))(.r‘𝑃)(𝐺‘𝐼)))) |
52 | 30, 47, 51 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) = (𝑋(-g‘𝑃)((𝑋(quot1p‘𝑅)(𝐺‘𝐼))(.r‘𝑃)(𝐺‘𝐼)))) |
53 | 26, 3 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → 𝑃 ∈ Ring) |
54 | 48, 2, 6, 37 | q1pcl 25320 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺‘𝐼) ∈ (Unic1p‘𝑅)) → (𝑋(quot1p‘𝑅)(𝐺‘𝐼)) ∈ (Base‘𝑃)) |
55 | 26, 30, 39, 54 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝑋(quot1p‘𝑅)(𝐺‘𝐼)) ∈ (Base‘𝑃)) |
56 | 7, 6, 49 | lidlmcl 20488 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ ((𝑋(quot1p‘𝑅)(𝐺‘𝐼)) ∈ (Base‘𝑃) ∧ (𝐺‘𝐼) ∈ 𝐼)) → ((𝑋(quot1p‘𝑅)(𝐺‘𝐼))(.r‘𝑃)(𝐺‘𝐼)) ∈ 𝐼) |
57 | 53, 27, 55, 46, 56 | syl22anc 836 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → ((𝑋(quot1p‘𝑅)(𝐺‘𝐼))(.r‘𝑃)(𝐺‘𝐼)) ∈ 𝐼) |
58 | 7, 50 | lidlsubcl 20487 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ ((𝑋(quot1p‘𝑅)(𝐺‘𝐼))(.r‘𝑃)(𝐺‘𝐼)) ∈ 𝐼)) → (𝑋(-g‘𝑃)((𝑋(quot1p‘𝑅)(𝐺‘𝐼))(.r‘𝑃)(𝐺‘𝐼))) ∈ 𝐼) |
59 | 53, 27, 29, 57, 58 | syl22anc 836 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝑋(-g‘𝑃)((𝑋(quot1p‘𝑅)(𝐺‘𝐼))(.r‘𝑃)(𝐺‘𝐼))) ∈ 𝐼) |
60 | 52, 59 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ∈ 𝐼) |
61 | 28, 60 | sseldd 3922 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ∈ (Base‘𝑃)) |
62 | | ffvelrn 6959 |
. . . . . . 7
⊢ (((
deg1 ‘𝑅):(Base‘𝑃)⟶ℝ* ∧ (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ∈ (Base‘𝑃)) → (( deg1 ‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))) ∈
ℝ*) |
63 | 45, 61, 62 | sylancr 587 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (( deg1
‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))) ∈
ℝ*) |
64 | 28 | ssdifd 4075 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝐼 ∖ {(0g‘𝑃)}) ⊆ ((Base‘𝑃) ∖
{(0g‘𝑃)})) |
65 | | imass2 6010 |
. . . . . . . . . 10
⊢ ((𝐼 ∖
{(0g‘𝑃)})
⊆ ((Base‘𝑃)
∖ {(0g‘𝑃)}) → (( deg1 ‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)})) ⊆ (( deg1
‘𝑅) “
((Base‘𝑃) ∖
{(0g‘𝑃)}))) |
66 | 64, 65 | syl 17 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (( deg1
‘𝑅) “ (𝐼 ∖
{(0g‘𝑃)}))
⊆ (( deg1 ‘𝑅) “ ((Base‘𝑃) ∖ {(0g‘𝑃)}))) |
67 | 32, 2, 15, 6 | deg1n0ima 25254 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → ((
deg1 ‘𝑅)
“ ((Base‘𝑃)
∖ {(0g‘𝑃)})) ⊆
ℕ0) |
68 | 26, 67 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (( deg1
‘𝑅) “
((Base‘𝑃) ∖
{(0g‘𝑃)}))
⊆ ℕ0) |
69 | | nn0uz 12620 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
70 | 68, 69 | sseqtrdi 3971 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (( deg1
‘𝑅) “
((Base‘𝑃) ∖
{(0g‘𝑃)}))
⊆ (ℤ≥‘0)) |
71 | 66, 70 | sstrd 3931 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (( deg1
‘𝑅) “ (𝐼 ∖
{(0g‘𝑃)}))
⊆ (ℤ≥‘0)) |
72 | | uzssz 12603 |
. . . . . . . . 9
⊢
(ℤ≥‘0) ⊆ ℤ |
73 | | zssre 12326 |
. . . . . . . . . 10
⊢ ℤ
⊆ ℝ |
74 | | ressxr 11019 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℝ* |
75 | 73, 74 | sstri 3930 |
. . . . . . . . 9
⊢ ℤ
⊆ ℝ* |
76 | 72, 75 | sstri 3930 |
. . . . . . . 8
⊢
(ℤ≥‘0) ⊆
ℝ* |
77 | 71, 76 | sstrdi 3933 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (( deg1
‘𝑅) “ (𝐼 ∖
{(0g‘𝑃)}))
⊆ ℝ*) |
78 | 7, 15 | lidl0cl 20483 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (0g‘𝑃) ∈ 𝐼) |
79 | 53, 27, 78 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) →
(0g‘𝑃)
∈ 𝐼) |
80 | 79 | snssd 4742 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) →
{(0g‘𝑃)}
⊆ 𝐼) |
81 | 31 | necomd 2999 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) →
{(0g‘𝑃)}
≠ 𝐼) |
82 | | pssdifn0 4299 |
. . . . . . . . . 10
⊢
(({(0g‘𝑃)} ⊆ 𝐼 ∧ {(0g‘𝑃)} ≠ 𝐼) → (𝐼 ∖ {(0g‘𝑃)}) ≠
∅) |
83 | 80, 81, 82 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝐼 ∖ {(0g‘𝑃)}) ≠
∅) |
84 | | ffn 6600 |
. . . . . . . . . . . 12
⊢ ((
deg1 ‘𝑅):(Base‘𝑃)⟶ℝ* → (
deg1 ‘𝑅)
Fn (Base‘𝑃)) |
85 | 45, 84 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (
deg1 ‘𝑅)
Fn (Base‘𝑃) |
86 | 28 | ssdifssd 4077 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝐼 ∖ {(0g‘𝑃)}) ⊆ (Base‘𝑃)) |
87 | | fnimaeq0 6566 |
. . . . . . . . . . 11
⊢ (((
deg1 ‘𝑅)
Fn (Base‘𝑃) ∧
(𝐼 ∖
{(0g‘𝑃)})
⊆ (Base‘𝑃))
→ ((( deg1 ‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)})) = ∅ ↔ (𝐼 ∖
{(0g‘𝑃)})
= ∅)) |
88 | 85, 86, 87 | sylancr 587 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → ((( deg1
‘𝑅) “ (𝐼 ∖
{(0g‘𝑃)}))
= ∅ ↔ (𝐼 ∖
{(0g‘𝑃)})
= ∅)) |
89 | 88 | necon3bid 2988 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → ((( deg1
‘𝑅) “ (𝐼 ∖
{(0g‘𝑃)}))
≠ ∅ ↔ (𝐼
∖ {(0g‘𝑃)}) ≠ ∅)) |
90 | 83, 89 | mpbird 256 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (( deg1
‘𝑅) “ (𝐼 ∖
{(0g‘𝑃)}))
≠ ∅) |
91 | | infssuzcl 12672 |
. . . . . . . 8
⊢ ((((
deg1 ‘𝑅)
“ (𝐼 ∖
{(0g‘𝑃)}))
⊆ (ℤ≥‘0) ∧ (( deg1 ‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)})) ≠ ∅) → inf(((
deg1 ‘𝑅)
“ (𝐼 ∖
{(0g‘𝑃)})), ℝ, < ) ∈ ((
deg1 ‘𝑅)
“ (𝐼 ∖
{(0g‘𝑃)}))) |
92 | 71, 90, 91 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → inf(((
deg1 ‘𝑅)
“ (𝐼 ∖
{(0g‘𝑃)})), ℝ, < ) ∈ ((
deg1 ‘𝑅)
“ (𝐼 ∖
{(0g‘𝑃)}))) |
93 | 77, 92 | sseldd 3922 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → inf(((
deg1 ‘𝑅)
“ (𝐼 ∖
{(0g‘𝑃)})), ℝ, < ) ∈
ℝ*) |
94 | | xrltnle 11042 |
. . . . . 6
⊢ ((((
deg1 ‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))) ∈ ℝ* ∧ inf(((
deg1 ‘𝑅)
“ (𝐼 ∖
{(0g‘𝑃)})), ℝ, < ) ∈
ℝ*) → ((( deg1 ‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))) < inf((( deg1 ‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)})), ℝ, < ) ↔
¬ inf((( deg1 ‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)})), ℝ, < ) ≤ ((
deg1 ‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))))) |
95 | 63, 93, 94 | syl2anc 584 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → ((( deg1
‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))) < inf((( deg1 ‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)})), ℝ, < ) ↔
¬ inf((( deg1 ‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)})), ℝ, < ) ≤ ((
deg1 ‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))))) |
96 | 44, 95 | mpbid 231 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → ¬ inf(((
deg1 ‘𝑅)
“ (𝐼 ∖
{(0g‘𝑃)})), ℝ, < ) ≤ ((
deg1 ‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼)))) |
97 | 71 | adantr 481 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) ∧ (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ≠ (0g‘𝑃)) → (( deg1
‘𝑅) “ (𝐼 ∖
{(0g‘𝑃)}))
⊆ (ℤ≥‘0)) |
98 | 60 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) ∧ (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ≠ (0g‘𝑃)) → (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ∈ 𝐼) |
99 | | simpr 485 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) ∧ (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ≠ (0g‘𝑃)) → (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ≠ (0g‘𝑃)) |
100 | | eldifsn 4720 |
. . . . . . . . 9
⊢ ((𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ∈ (𝐼 ∖ {(0g‘𝑃)}) ↔ ((𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ∈ 𝐼 ∧ (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ≠ (0g‘𝑃))) |
101 | 98, 99, 100 | sylanbrc 583 |
. . . . . . . 8
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) ∧ (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ≠ (0g‘𝑃)) → (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ∈ (𝐼 ∖ {(0g‘𝑃)})) |
102 | | fnfvima 7109 |
. . . . . . . 8
⊢ (((
deg1 ‘𝑅)
Fn (Base‘𝑃) ∧
(𝐼 ∖
{(0g‘𝑃)})
⊆ (Base‘𝑃)
∧ (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ∈ (𝐼 ∖ {(0g‘𝑃)})) → (( deg1
‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))) ∈ (( deg1 ‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)}))) |
103 | 85, 86, 101, 102 | mp3an2ani 1467 |
. . . . . . 7
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) ∧ (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ≠ (0g‘𝑃)) → (( deg1
‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))) ∈ (( deg1 ‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)}))) |
104 | | infssuzle 12671 |
. . . . . . 7
⊢ ((((
deg1 ‘𝑅)
“ (𝐼 ∖
{(0g‘𝑃)}))
⊆ (ℤ≥‘0) ∧ (( deg1 ‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))) ∈ (( deg1 ‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)}))) → inf(((
deg1 ‘𝑅)
“ (𝐼 ∖
{(0g‘𝑃)})), ℝ, < ) ≤ ((
deg1 ‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼)))) |
105 | 97, 103, 104 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) ∧ (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ≠ (0g‘𝑃)) → inf((( deg1
‘𝑅) “ (𝐼 ∖
{(0g‘𝑃)})), ℝ, < ) ≤ ((
deg1 ‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼)))) |
106 | 105 | ex 413 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → ((𝑋(rem1p‘𝑅)(𝐺‘𝐼)) ≠ (0g‘𝑃) → inf((( deg1
‘𝑅) “ (𝐼 ∖
{(0g‘𝑃)})), ℝ, < ) ≤ ((
deg1 ‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))))) |
107 | 106 | necon1bd 2961 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (¬ inf(((
deg1 ‘𝑅)
“ (𝐼 ∖
{(0g‘𝑃)})), ℝ, < ) ≤ ((
deg1 ‘𝑅)‘(𝑋(rem1p‘𝑅)(𝐺‘𝐼))) → (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) = (0g‘𝑃))) |
108 | 96, 107 | mpd 15 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) = (0g‘𝑃)) |
109 | 2, 14, 6, 37, 15, 40 | dvdsr1p 25326 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺‘𝐼) ∈ (Unic1p‘𝑅)) → ((𝐺‘𝐼) ∥ 𝑋 ↔ (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) = (0g‘𝑃))) |
110 | 26, 30, 39, 109 | syl3anc 1370 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → ((𝐺‘𝐼) ∥ 𝑋 ↔ (𝑋(rem1p‘𝑅)(𝐺‘𝐼)) = (0g‘𝑃))) |
111 | 108, 110 | mpbird 256 |
. 2
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝐺‘𝐼) ∥ 𝑋) |
112 | 24, 111 | pm2.61dane 3032 |
1
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝐺‘𝐼) ∥ 𝑋) |