MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pdvds Structured version   Visualization version   GIF version

Theorem ig1pdvds 26113
Description: The monic generator of an ideal divides all elements of the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1pval.p 𝑃 = (Poly1𝑅)
ig1pval.g 𝐺 = (idlGen1p𝑅)
ig1pcl.u 𝑈 = (LIdeal‘𝑃)
ig1pdvds.d = (∥r𝑃)
Assertion
Ref Expression
ig1pdvds ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) 𝑋)

Proof of Theorem ig1pdvds
StepHypRef Expression
1 drngring 20653 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 ig1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
32ply1ring 22161 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . . . . . 6 (𝑅 ∈ DivRing → 𝑃 ∈ Ring)
543ad2ant1 1133 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → 𝑃 ∈ Ring)
6 eqid 2733 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
7 ig1pcl.u . . . . . . . 8 𝑈 = (LIdeal‘𝑃)
86, 7lidlss 21151 . . . . . . 7 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
983ad2ant2 1134 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → 𝐼 ⊆ (Base‘𝑃))
10 ig1pval.g . . . . . . . 8 𝐺 = (idlGen1p𝑅)
112, 10, 7ig1pcl 26112 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐺𝐼) ∈ 𝐼)
12113adant3 1132 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) ∈ 𝐼)
139, 12sseldd 3931 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) ∈ (Base‘𝑃))
14 ig1pdvds.d . . . . . 6 = (∥r𝑃)
15 eqid 2733 . . . . . 6 (0g𝑃) = (0g𝑃)
166, 14, 15dvdsr01 20291 . . . . 5 ((𝑃 ∈ Ring ∧ (𝐺𝐼) ∈ (Base‘𝑃)) → (𝐺𝐼) (0g𝑃))
175, 13, 16syl2anc 584 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) (0g𝑃))
1817adantr 480 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → (𝐺𝐼) (0g𝑃))
19 eleq2 2822 . . . . . 6 (𝐼 = {(0g𝑃)} → (𝑋𝐼𝑋 ∈ {(0g𝑃)}))
2019biimpac 478 . . . . 5 ((𝑋𝐼𝐼 = {(0g𝑃)}) → 𝑋 ∈ {(0g𝑃)})
21203ad2antl3 1188 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → 𝑋 ∈ {(0g𝑃)})
22 elsni 4592 . . . 4 (𝑋 ∈ {(0g𝑃)} → 𝑋 = (0g𝑃))
2321, 22syl 17 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → 𝑋 = (0g𝑃))
2418, 23breqtrrd 5121 . 2 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → (𝐺𝐼) 𝑋)
25 simpl1 1192 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑅 ∈ DivRing)
2625, 1syl 17 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑅 ∈ Ring)
27 simpl2 1193 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼𝑈)
2827, 8syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼 ⊆ (Base‘𝑃))
29 simpl3 1194 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑋𝐼)
3028, 29sseldd 3931 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑋 ∈ (Base‘𝑃))
31 simpr 484 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼 ≠ {(0g𝑃)})
32 eqid 2733 . . . . . . . . . . 11 (deg1𝑅) = (deg1𝑅)
33 eqid 2733 . . . . . . . . . . 11 (Monic1p𝑅) = (Monic1p𝑅)
342, 10, 15, 7, 32, 33ig1pval3 26111 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ (Monic1p𝑅) ∧ ((deg1𝑅)‘(𝐺𝐼)) = inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < )))
3525, 27, 31, 34syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ (Monic1p𝑅) ∧ ((deg1𝑅)‘(𝐺𝐼)) = inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < )))
3635simp2d 1143 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Monic1p𝑅))
37 eqid 2733 . . . . . . . . 9 (Unic1p𝑅) = (Unic1p𝑅)
3837, 33mon1puc1p 26084 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐺𝐼) ∈ (Monic1p𝑅)) → (𝐺𝐼) ∈ (Unic1p𝑅))
3926, 36, 38syl2anc 584 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Unic1p𝑅))
40 eqid 2733 . . . . . . . 8 (rem1p𝑅) = (rem1p𝑅)
4140, 2, 6, 37, 32r1pdeglt 26093 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < ((deg1𝑅)‘(𝐺𝐼)))
4226, 30, 39, 41syl3anc 1373 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < ((deg1𝑅)‘(𝐺𝐼)))
4335simp3d 1144 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝐺𝐼)) = inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ))
4442, 43breqtrd 5119 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ))
4532, 2, 6deg1xrf 26014 . . . . . . 7 (deg1𝑅):(Base‘𝑃)⟶ℝ*
4635simp1d 1142 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ 𝐼)
4728, 46sseldd 3931 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Base‘𝑃))
48 eqid 2733 . . . . . . . . . . 11 (quot1p𝑅) = (quot1p𝑅)
49 eqid 2733 . . . . . . . . . . 11 (.r𝑃) = (.r𝑃)
50 eqid 2733 . . . . . . . . . . 11 (-g𝑃) = (-g𝑃)
5140, 2, 6, 48, 49, 50r1pval 26091 . . . . . . . . . 10 ((𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Base‘𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))))
5230, 47, 51syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))))
5326, 3syl 17 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑃 ∈ Ring)
5448, 2, 6, 37q1pcl 26090 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → (𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
5526, 30, 39, 54syl3anc 1373 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
567, 6, 49lidlmcl 21164 . . . . . . . . . . 11 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ 𝐼)) → ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)
5753, 27, 55, 46, 56syl22anc 838 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)
587, 50lidlsubcl 21163 . . . . . . . . . 10 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼 ∧ ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)) → (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))) ∈ 𝐼)
5953, 27, 29, 57, 58syl22anc 838 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))) ∈ 𝐼)
6052, 59eqeltrd 2833 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼)
6128, 60sseldd 3931 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
62 ffvelcdm 7020 . . . . . . 7 (((deg1𝑅):(Base‘𝑃)⟶ℝ* ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃)) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ*)
6345, 61, 62sylancr 587 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ*)
6428ssdifd 4094 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ⊆ ((Base‘𝑃) ∖ {(0g𝑃)}))
65 imass2 6055 . . . . . . . . . 10 ((𝐼 ∖ {(0g𝑃)}) ⊆ ((Base‘𝑃) ∖ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})))
6664, 65syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})))
6732, 2, 15, 6deg1n0ima 26022 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ ℕ0)
6826, 67syl 17 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ ℕ0)
69 nn0uz 12776 . . . . . . . . . 10 0 = (ℤ‘0)
7068, 69sseqtrdi 3971 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
7166, 70sstrd 3941 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
72 uzssz 12759 . . . . . . . . 9 (ℤ‘0) ⊆ ℤ
73 zssre 12482 . . . . . . . . . 10 ℤ ⊆ ℝ
74 ressxr 11163 . . . . . . . . . 10 ℝ ⊆ ℝ*
7573, 74sstri 3940 . . . . . . . . 9 ℤ ⊆ ℝ*
7672, 75sstri 3940 . . . . . . . 8 (ℤ‘0) ⊆ ℝ*
7771, 76sstrdi 3943 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ ℝ*)
787, 15lidl0cl 21159 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → (0g𝑃) ∈ 𝐼)
7953, 27, 78syl2anc 584 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (0g𝑃) ∈ 𝐼)
8079snssd 4760 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → {(0g𝑃)} ⊆ 𝐼)
8131necomd 2984 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → {(0g𝑃)} ≠ 𝐼)
82 pssdifn0 4317 . . . . . . . . . 10 (({(0g𝑃)} ⊆ 𝐼 ∧ {(0g𝑃)} ≠ 𝐼) → (𝐼 ∖ {(0g𝑃)}) ≠ ∅)
8380, 81, 82syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ≠ ∅)
84 ffn 6656 . . . . . . . . . . . 12 ((deg1𝑅):(Base‘𝑃)⟶ℝ* → (deg1𝑅) Fn (Base‘𝑃))
8545, 84ax-mp 5 . . . . . . . . . . 11 (deg1𝑅) Fn (Base‘𝑃)
8628ssdifssd 4096 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃))
87 fnimaeq0 6619 . . . . . . . . . . 11 (((deg1𝑅) Fn (Base‘𝑃) ∧ (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃)) → (((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) = ∅ ↔ (𝐼 ∖ {(0g𝑃)}) = ∅))
8885, 86, 87sylancr 587 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) = ∅ ↔ (𝐼 ∖ {(0g𝑃)}) = ∅))
8988necon3bid 2973 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅ ↔ (𝐼 ∖ {(0g𝑃)}) ≠ ∅))
9083, 89mpbird 257 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅)
91 infssuzcl 12832 . . . . . . . 8 ((((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0) ∧ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
9271, 90, 91syl2anc 584 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
9377, 92sseldd 3931 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ℝ*)
94 xrltnle 11186 . . . . . 6 ((((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ* ∧ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ℝ*) → (((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ↔ ¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
9563, 93, 94syl2anc 584 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ↔ ¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
9644, 95mpbid 232 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
9771adantr 480 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
9860adantr 480 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼)
99 simpr 484 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃))
100 eldifsn 4737 . . . . . . . . 9 ((𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)}) ↔ ((𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼 ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)))
10198, 99, 100sylanbrc 583 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)}))
102 fnfvima 7173 . . . . . . . 8 (((deg1𝑅) Fn (Base‘𝑃) ∧ (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)})) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
10385, 86, 101, 102mp3an2ani 1470 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
104 infssuzle 12831 . . . . . . 7 ((((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0) ∧ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)}))) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
10597, 103, 104syl2anc 584 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
106105ex 412 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
107106necon1bd 2947 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
10896, 107mpd 15 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃))
1092, 14, 6, 37, 15, 40dvdsr1p 26097 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → ((𝐺𝐼) 𝑋 ↔ (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
11026, 30, 39, 109syl3anc 1373 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) 𝑋 ↔ (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
111108, 110mpbird 257 . 2 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) 𝑋)
11224, 111pm2.61dane 3016 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  cdif 3895  wss 3898  c0 4282  {csn 4575   class class class wbr 5093  cima 5622   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  infcinf 9332  cr 11012  0cc0 11013  *cxr 11152   < clt 11153  cle 11154  0cn0 12388  cz 12475  cuz 12738  Basecbs 17122  .rcmulr 17164  0gc0g 17345  -gcsg 18850  Ringcrg 20153  rcdsr 20274  DivRingcdr 20646  LIdealclidl 21145  Poly1cpl1 22090  deg1cdg1 25987  Monic1pcmn1 26059  Unic1pcuc1p 26060  quot1pcq1p 26061  rem1pcr1p 26062  idlGen1pcig1p 26063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-subrng 20463  df-subrg 20487  df-rlreg 20611  df-drng 20648  df-lmod 20797  df-lss 20867  df-sra 21109  df-rgmod 21110  df-lidl 21147  df-cnfld 21294  df-ascl 21794  df-psr 21848  df-mvr 21849  df-mpl 21850  df-opsr 21852  df-psr1 22093  df-vr1 22094  df-ply1 22095  df-coe1 22096  df-mdeg 25988  df-deg1 25989  df-mon1 26064  df-uc1p 26065  df-q1p 26066  df-r1p 26067  df-ig1p 26068
This theorem is referenced by:  ig1prsp  26114
  Copyright terms: Public domain W3C validator