MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pdvds Structured version   Visualization version   GIF version

Theorem ig1pdvds 26092
Description: The monic generator of an ideal divides all elements of the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1pval.p 𝑃 = (Poly1𝑅)
ig1pval.g 𝐺 = (idlGen1p𝑅)
ig1pcl.u 𝑈 = (LIdeal‘𝑃)
ig1pdvds.d = (∥r𝑃)
Assertion
Ref Expression
ig1pdvds ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) 𝑋)

Proof of Theorem ig1pdvds
StepHypRef Expression
1 drngring 20652 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 ig1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
32ply1ring 22139 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . . . . . 6 (𝑅 ∈ DivRing → 𝑃 ∈ Ring)
543ad2ant1 1133 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → 𝑃 ∈ Ring)
6 eqid 2730 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
7 ig1pcl.u . . . . . . . 8 𝑈 = (LIdeal‘𝑃)
86, 7lidlss 21129 . . . . . . 7 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
983ad2ant2 1134 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → 𝐼 ⊆ (Base‘𝑃))
10 ig1pval.g . . . . . . . 8 𝐺 = (idlGen1p𝑅)
112, 10, 7ig1pcl 26091 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐺𝐼) ∈ 𝐼)
12113adant3 1132 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) ∈ 𝐼)
139, 12sseldd 3950 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) ∈ (Base‘𝑃))
14 ig1pdvds.d . . . . . 6 = (∥r𝑃)
15 eqid 2730 . . . . . 6 (0g𝑃) = (0g𝑃)
166, 14, 15dvdsr01 20287 . . . . 5 ((𝑃 ∈ Ring ∧ (𝐺𝐼) ∈ (Base‘𝑃)) → (𝐺𝐼) (0g𝑃))
175, 13, 16syl2anc 584 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) (0g𝑃))
1817adantr 480 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → (𝐺𝐼) (0g𝑃))
19 eleq2 2818 . . . . . 6 (𝐼 = {(0g𝑃)} → (𝑋𝐼𝑋 ∈ {(0g𝑃)}))
2019biimpac 478 . . . . 5 ((𝑋𝐼𝐼 = {(0g𝑃)}) → 𝑋 ∈ {(0g𝑃)})
21203ad2antl3 1188 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → 𝑋 ∈ {(0g𝑃)})
22 elsni 4609 . . . 4 (𝑋 ∈ {(0g𝑃)} → 𝑋 = (0g𝑃))
2321, 22syl 17 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → 𝑋 = (0g𝑃))
2418, 23breqtrrd 5138 . 2 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → (𝐺𝐼) 𝑋)
25 simpl1 1192 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑅 ∈ DivRing)
2625, 1syl 17 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑅 ∈ Ring)
27 simpl2 1193 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼𝑈)
2827, 8syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼 ⊆ (Base‘𝑃))
29 simpl3 1194 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑋𝐼)
3028, 29sseldd 3950 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑋 ∈ (Base‘𝑃))
31 simpr 484 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼 ≠ {(0g𝑃)})
32 eqid 2730 . . . . . . . . . . 11 (deg1𝑅) = (deg1𝑅)
33 eqid 2730 . . . . . . . . . . 11 (Monic1p𝑅) = (Monic1p𝑅)
342, 10, 15, 7, 32, 33ig1pval3 26090 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ (Monic1p𝑅) ∧ ((deg1𝑅)‘(𝐺𝐼)) = inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < )))
3525, 27, 31, 34syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ (Monic1p𝑅) ∧ ((deg1𝑅)‘(𝐺𝐼)) = inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < )))
3635simp2d 1143 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Monic1p𝑅))
37 eqid 2730 . . . . . . . . 9 (Unic1p𝑅) = (Unic1p𝑅)
3837, 33mon1puc1p 26063 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐺𝐼) ∈ (Monic1p𝑅)) → (𝐺𝐼) ∈ (Unic1p𝑅))
3926, 36, 38syl2anc 584 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Unic1p𝑅))
40 eqid 2730 . . . . . . . 8 (rem1p𝑅) = (rem1p𝑅)
4140, 2, 6, 37, 32r1pdeglt 26072 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < ((deg1𝑅)‘(𝐺𝐼)))
4226, 30, 39, 41syl3anc 1373 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < ((deg1𝑅)‘(𝐺𝐼)))
4335simp3d 1144 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝐺𝐼)) = inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ))
4442, 43breqtrd 5136 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ))
4532, 2, 6deg1xrf 25993 . . . . . . 7 (deg1𝑅):(Base‘𝑃)⟶ℝ*
4635simp1d 1142 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ 𝐼)
4728, 46sseldd 3950 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Base‘𝑃))
48 eqid 2730 . . . . . . . . . . 11 (quot1p𝑅) = (quot1p𝑅)
49 eqid 2730 . . . . . . . . . . 11 (.r𝑃) = (.r𝑃)
50 eqid 2730 . . . . . . . . . . 11 (-g𝑃) = (-g𝑃)
5140, 2, 6, 48, 49, 50r1pval 26070 . . . . . . . . . 10 ((𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Base‘𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))))
5230, 47, 51syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))))
5326, 3syl 17 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑃 ∈ Ring)
5448, 2, 6, 37q1pcl 26069 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → (𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
5526, 30, 39, 54syl3anc 1373 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
567, 6, 49lidlmcl 21142 . . . . . . . . . . 11 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ 𝐼)) → ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)
5753, 27, 55, 46, 56syl22anc 838 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)
587, 50lidlsubcl 21141 . . . . . . . . . 10 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼 ∧ ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)) → (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))) ∈ 𝐼)
5953, 27, 29, 57, 58syl22anc 838 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))) ∈ 𝐼)
6052, 59eqeltrd 2829 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼)
6128, 60sseldd 3950 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
62 ffvelcdm 7056 . . . . . . 7 (((deg1𝑅):(Base‘𝑃)⟶ℝ* ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃)) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ*)
6345, 61, 62sylancr 587 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ*)
6428ssdifd 4111 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ⊆ ((Base‘𝑃) ∖ {(0g𝑃)}))
65 imass2 6076 . . . . . . . . . 10 ((𝐼 ∖ {(0g𝑃)}) ⊆ ((Base‘𝑃) ∖ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})))
6664, 65syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})))
6732, 2, 15, 6deg1n0ima 26001 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ ℕ0)
6826, 67syl 17 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ ℕ0)
69 nn0uz 12842 . . . . . . . . . 10 0 = (ℤ‘0)
7068, 69sseqtrdi 3990 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
7166, 70sstrd 3960 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
72 uzssz 12821 . . . . . . . . 9 (ℤ‘0) ⊆ ℤ
73 zssre 12543 . . . . . . . . . 10 ℤ ⊆ ℝ
74 ressxr 11225 . . . . . . . . . 10 ℝ ⊆ ℝ*
7573, 74sstri 3959 . . . . . . . . 9 ℤ ⊆ ℝ*
7672, 75sstri 3959 . . . . . . . 8 (ℤ‘0) ⊆ ℝ*
7771, 76sstrdi 3962 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ ℝ*)
787, 15lidl0cl 21137 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → (0g𝑃) ∈ 𝐼)
7953, 27, 78syl2anc 584 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (0g𝑃) ∈ 𝐼)
8079snssd 4776 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → {(0g𝑃)} ⊆ 𝐼)
8131necomd 2981 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → {(0g𝑃)} ≠ 𝐼)
82 pssdifn0 4334 . . . . . . . . . 10 (({(0g𝑃)} ⊆ 𝐼 ∧ {(0g𝑃)} ≠ 𝐼) → (𝐼 ∖ {(0g𝑃)}) ≠ ∅)
8380, 81, 82syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ≠ ∅)
84 ffn 6691 . . . . . . . . . . . 12 ((deg1𝑅):(Base‘𝑃)⟶ℝ* → (deg1𝑅) Fn (Base‘𝑃))
8545, 84ax-mp 5 . . . . . . . . . . 11 (deg1𝑅) Fn (Base‘𝑃)
8628ssdifssd 4113 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃))
87 fnimaeq0 6654 . . . . . . . . . . 11 (((deg1𝑅) Fn (Base‘𝑃) ∧ (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃)) → (((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) = ∅ ↔ (𝐼 ∖ {(0g𝑃)}) = ∅))
8885, 86, 87sylancr 587 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) = ∅ ↔ (𝐼 ∖ {(0g𝑃)}) = ∅))
8988necon3bid 2970 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅ ↔ (𝐼 ∖ {(0g𝑃)}) ≠ ∅))
9083, 89mpbird 257 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅)
91 infssuzcl 12898 . . . . . . . 8 ((((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0) ∧ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
9271, 90, 91syl2anc 584 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
9377, 92sseldd 3950 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ℝ*)
94 xrltnle 11248 . . . . . 6 ((((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ* ∧ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ℝ*) → (((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ↔ ¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
9563, 93, 94syl2anc 584 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ↔ ¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
9644, 95mpbid 232 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
9771adantr 480 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
9860adantr 480 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼)
99 simpr 484 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃))
100 eldifsn 4753 . . . . . . . . 9 ((𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)}) ↔ ((𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼 ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)))
10198, 99, 100sylanbrc 583 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)}))
102 fnfvima 7210 . . . . . . . 8 (((deg1𝑅) Fn (Base‘𝑃) ∧ (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)})) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
10385, 86, 101, 102mp3an2ani 1470 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
104 infssuzle 12897 . . . . . . 7 ((((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0) ∧ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)}))) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
10597, 103, 104syl2anc 584 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
106105ex 412 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
107106necon1bd 2944 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
10896, 107mpd 15 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃))
1092, 14, 6, 37, 15, 40dvdsr1p 26076 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → ((𝐺𝐼) 𝑋 ↔ (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
11026, 30, 39, 109syl3anc 1373 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) 𝑋 ↔ (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
111108, 110mpbird 257 . 2 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) 𝑋)
11224, 111pm2.61dane 3013 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cdif 3914  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  infcinf 9399  cr 11074  0cc0 11075  *cxr 11214   < clt 11215  cle 11216  0cn0 12449  cz 12536  cuz 12800  Basecbs 17186  .rcmulr 17228  0gc0g 17409  -gcsg 18874  Ringcrg 20149  rcdsr 20270  DivRingcdr 20645  LIdealclidl 21123  Poly1cpl1 22068  deg1cdg1 25966  Monic1pcmn1 26038  Unic1pcuc1p 26039  quot1pcq1p 26040  rem1pcr1p 26041  idlGen1pcig1p 26042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-drng 20647  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-cnfld 21272  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-ig1p 26047
This theorem is referenced by:  ig1prsp  26093
  Copyright terms: Public domain W3C validator