MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pdvds Structured version   Visualization version   GIF version

Theorem ig1pdvds 26239
Description: The monic generator of an ideal divides all elements of the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1pval.p 𝑃 = (Poly1𝑅)
ig1pval.g 𝐺 = (idlGen1p𝑅)
ig1pcl.u 𝑈 = (LIdeal‘𝑃)
ig1pdvds.d = (∥r𝑃)
Assertion
Ref Expression
ig1pdvds ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) 𝑋)

Proof of Theorem ig1pdvds
StepHypRef Expression
1 drngring 20758 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 ig1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
32ply1ring 22270 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . . . . . 6 (𝑅 ∈ DivRing → 𝑃 ∈ Ring)
543ad2ant1 1133 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → 𝑃 ∈ Ring)
6 eqid 2740 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
7 ig1pcl.u . . . . . . . 8 𝑈 = (LIdeal‘𝑃)
86, 7lidlss 21245 . . . . . . 7 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
983ad2ant2 1134 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → 𝐼 ⊆ (Base‘𝑃))
10 ig1pval.g . . . . . . . 8 𝐺 = (idlGen1p𝑅)
112, 10, 7ig1pcl 26238 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐺𝐼) ∈ 𝐼)
12113adant3 1132 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) ∈ 𝐼)
139, 12sseldd 4009 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) ∈ (Base‘𝑃))
14 ig1pdvds.d . . . . . 6 = (∥r𝑃)
15 eqid 2740 . . . . . 6 (0g𝑃) = (0g𝑃)
166, 14, 15dvdsr01 20397 . . . . 5 ((𝑃 ∈ Ring ∧ (𝐺𝐼) ∈ (Base‘𝑃)) → (𝐺𝐼) (0g𝑃))
175, 13, 16syl2anc 583 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) (0g𝑃))
1817adantr 480 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → (𝐺𝐼) (0g𝑃))
19 eleq2 2833 . . . . . 6 (𝐼 = {(0g𝑃)} → (𝑋𝐼𝑋 ∈ {(0g𝑃)}))
2019biimpac 478 . . . . 5 ((𝑋𝐼𝐼 = {(0g𝑃)}) → 𝑋 ∈ {(0g𝑃)})
21203ad2antl3 1187 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → 𝑋 ∈ {(0g𝑃)})
22 elsni 4665 . . . 4 (𝑋 ∈ {(0g𝑃)} → 𝑋 = (0g𝑃))
2321, 22syl 17 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → 𝑋 = (0g𝑃))
2418, 23breqtrrd 5194 . 2 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → (𝐺𝐼) 𝑋)
25 simpl1 1191 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑅 ∈ DivRing)
2625, 1syl 17 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑅 ∈ Ring)
27 simpl2 1192 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼𝑈)
2827, 8syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼 ⊆ (Base‘𝑃))
29 simpl3 1193 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑋𝐼)
3028, 29sseldd 4009 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑋 ∈ (Base‘𝑃))
31 simpr 484 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼 ≠ {(0g𝑃)})
32 eqid 2740 . . . . . . . . . . 11 (deg1𝑅) = (deg1𝑅)
33 eqid 2740 . . . . . . . . . . 11 (Monic1p𝑅) = (Monic1p𝑅)
342, 10, 15, 7, 32, 33ig1pval3 26237 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ (Monic1p𝑅) ∧ ((deg1𝑅)‘(𝐺𝐼)) = inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < )))
3525, 27, 31, 34syl3anc 1371 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ (Monic1p𝑅) ∧ ((deg1𝑅)‘(𝐺𝐼)) = inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < )))
3635simp2d 1143 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Monic1p𝑅))
37 eqid 2740 . . . . . . . . 9 (Unic1p𝑅) = (Unic1p𝑅)
3837, 33mon1puc1p 26210 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐺𝐼) ∈ (Monic1p𝑅)) → (𝐺𝐼) ∈ (Unic1p𝑅))
3926, 36, 38syl2anc 583 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Unic1p𝑅))
40 eqid 2740 . . . . . . . 8 (rem1p𝑅) = (rem1p𝑅)
4140, 2, 6, 37, 32r1pdeglt 26219 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < ((deg1𝑅)‘(𝐺𝐼)))
4226, 30, 39, 41syl3anc 1371 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < ((deg1𝑅)‘(𝐺𝐼)))
4335simp3d 1144 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝐺𝐼)) = inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ))
4442, 43breqtrd 5192 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ))
4532, 2, 6deg1xrf 26140 . . . . . . 7 (deg1𝑅):(Base‘𝑃)⟶ℝ*
4635simp1d 1142 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ 𝐼)
4728, 46sseldd 4009 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Base‘𝑃))
48 eqid 2740 . . . . . . . . . . 11 (quot1p𝑅) = (quot1p𝑅)
49 eqid 2740 . . . . . . . . . . 11 (.r𝑃) = (.r𝑃)
50 eqid 2740 . . . . . . . . . . 11 (-g𝑃) = (-g𝑃)
5140, 2, 6, 48, 49, 50r1pval 26217 . . . . . . . . . 10 ((𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Base‘𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))))
5230, 47, 51syl2anc 583 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))))
5326, 3syl 17 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑃 ∈ Ring)
5448, 2, 6, 37q1pcl 26216 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → (𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
5526, 30, 39, 54syl3anc 1371 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
567, 6, 49lidlmcl 21258 . . . . . . . . . . 11 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ 𝐼)) → ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)
5753, 27, 55, 46, 56syl22anc 838 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)
587, 50lidlsubcl 21257 . . . . . . . . . 10 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼 ∧ ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)) → (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))) ∈ 𝐼)
5953, 27, 29, 57, 58syl22anc 838 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))) ∈ 𝐼)
6052, 59eqeltrd 2844 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼)
6128, 60sseldd 4009 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
62 ffvelcdm 7115 . . . . . . 7 (((deg1𝑅):(Base‘𝑃)⟶ℝ* ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃)) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ*)
6345, 61, 62sylancr 586 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ*)
6428ssdifd 4168 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ⊆ ((Base‘𝑃) ∖ {(0g𝑃)}))
65 imass2 6132 . . . . . . . . . 10 ((𝐼 ∖ {(0g𝑃)}) ⊆ ((Base‘𝑃) ∖ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})))
6664, 65syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})))
6732, 2, 15, 6deg1n0ima 26148 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ ℕ0)
6826, 67syl 17 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ ℕ0)
69 nn0uz 12945 . . . . . . . . . 10 0 = (ℤ‘0)
7068, 69sseqtrdi 4059 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
7166, 70sstrd 4019 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
72 uzssz 12924 . . . . . . . . 9 (ℤ‘0) ⊆ ℤ
73 zssre 12646 . . . . . . . . . 10 ℤ ⊆ ℝ
74 ressxr 11334 . . . . . . . . . 10 ℝ ⊆ ℝ*
7573, 74sstri 4018 . . . . . . . . 9 ℤ ⊆ ℝ*
7672, 75sstri 4018 . . . . . . . 8 (ℤ‘0) ⊆ ℝ*
7771, 76sstrdi 4021 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ ℝ*)
787, 15lidl0cl 21253 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → (0g𝑃) ∈ 𝐼)
7953, 27, 78syl2anc 583 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (0g𝑃) ∈ 𝐼)
8079snssd 4834 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → {(0g𝑃)} ⊆ 𝐼)
8131necomd 3002 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → {(0g𝑃)} ≠ 𝐼)
82 pssdifn0 4391 . . . . . . . . . 10 (({(0g𝑃)} ⊆ 𝐼 ∧ {(0g𝑃)} ≠ 𝐼) → (𝐼 ∖ {(0g𝑃)}) ≠ ∅)
8380, 81, 82syl2anc 583 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ≠ ∅)
84 ffn 6747 . . . . . . . . . . . 12 ((deg1𝑅):(Base‘𝑃)⟶ℝ* → (deg1𝑅) Fn (Base‘𝑃))
8545, 84ax-mp 5 . . . . . . . . . . 11 (deg1𝑅) Fn (Base‘𝑃)
8628ssdifssd 4170 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃))
87 fnimaeq0 6713 . . . . . . . . . . 11 (((deg1𝑅) Fn (Base‘𝑃) ∧ (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃)) → (((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) = ∅ ↔ (𝐼 ∖ {(0g𝑃)}) = ∅))
8885, 86, 87sylancr 586 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) = ∅ ↔ (𝐼 ∖ {(0g𝑃)}) = ∅))
8988necon3bid 2991 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅ ↔ (𝐼 ∖ {(0g𝑃)}) ≠ ∅))
9083, 89mpbird 257 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅)
91 infssuzcl 12997 . . . . . . . 8 ((((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0) ∧ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
9271, 90, 91syl2anc 583 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
9377, 92sseldd 4009 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ℝ*)
94 xrltnle 11357 . . . . . 6 ((((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ* ∧ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ℝ*) → (((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ↔ ¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
9563, 93, 94syl2anc 583 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ↔ ¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
9644, 95mpbid 232 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
9771adantr 480 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
9860adantr 480 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼)
99 simpr 484 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃))
100 eldifsn 4811 . . . . . . . . 9 ((𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)}) ↔ ((𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼 ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)))
10198, 99, 100sylanbrc 582 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)}))
102 fnfvima 7270 . . . . . . . 8 (((deg1𝑅) Fn (Base‘𝑃) ∧ (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)})) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
10385, 86, 101, 102mp3an2ani 1468 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
104 infssuzle 12996 . . . . . . 7 ((((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0) ∧ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)}))) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
10597, 103, 104syl2anc 583 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
106105ex 412 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
107106necon1bd 2964 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
10896, 107mpd 15 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃))
1092, 14, 6, 37, 15, 40dvdsr1p 26223 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → ((𝐺𝐼) 𝑋 ↔ (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
11026, 30, 39, 109syl3anc 1371 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) 𝑋 ↔ (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
111108, 110mpbird 257 . 2 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) 𝑋)
11224, 111pm2.61dane 3035 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  infcinf 9510  cr 11183  0cc0 11184  *cxr 11323   < clt 11324  cle 11325  0cn0 12553  cz 12639  cuz 12903  Basecbs 17258  .rcmulr 17312  0gc0g 17499  -gcsg 18975  Ringcrg 20260  rcdsr 20380  DivRingcdr 20751  LIdealclidl 21239  Poly1cpl1 22199  deg1cdg1 26113  Monic1pcmn1 26185  Unic1pcuc1p 26186  quot1pcq1p 26187  rem1pcr1p 26188  idlGen1pcig1p 26189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-drng 20753  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-cnfld 21388  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mdeg 26114  df-deg1 26115  df-mon1 26190  df-uc1p 26191  df-q1p 26192  df-r1p 26193  df-ig1p 26194
This theorem is referenced by:  ig1prsp  26240
  Copyright terms: Public domain W3C validator