MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pdvds Structured version   Visualization version   GIF version

Theorem ig1pdvds 26155
Description: The monic generator of an ideal divides all elements of the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1pval.p 𝑃 = (Poly1𝑅)
ig1pval.g 𝐺 = (idlGen1p𝑅)
ig1pcl.u 𝑈 = (LIdeal‘𝑃)
ig1pdvds.d = (∥r𝑃)
Assertion
Ref Expression
ig1pdvds ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) 𝑋)

Proof of Theorem ig1pdvds
StepHypRef Expression
1 drngring 20704 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 ig1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
32ply1ring 22197 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . . . . . 6 (𝑅 ∈ DivRing → 𝑃 ∈ Ring)
543ad2ant1 1133 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → 𝑃 ∈ Ring)
6 eqid 2734 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
7 ig1pcl.u . . . . . . . 8 𝑈 = (LIdeal‘𝑃)
86, 7lidlss 21184 . . . . . . 7 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
983ad2ant2 1134 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → 𝐼 ⊆ (Base‘𝑃))
10 ig1pval.g . . . . . . . 8 𝐺 = (idlGen1p𝑅)
112, 10, 7ig1pcl 26154 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐺𝐼) ∈ 𝐼)
12113adant3 1132 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) ∈ 𝐼)
139, 12sseldd 3964 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) ∈ (Base‘𝑃))
14 ig1pdvds.d . . . . . 6 = (∥r𝑃)
15 eqid 2734 . . . . . 6 (0g𝑃) = (0g𝑃)
166, 14, 15dvdsr01 20339 . . . . 5 ((𝑃 ∈ Ring ∧ (𝐺𝐼) ∈ (Base‘𝑃)) → (𝐺𝐼) (0g𝑃))
175, 13, 16syl2anc 584 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) (0g𝑃))
1817adantr 480 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → (𝐺𝐼) (0g𝑃))
19 eleq2 2822 . . . . . 6 (𝐼 = {(0g𝑃)} → (𝑋𝐼𝑋 ∈ {(0g𝑃)}))
2019biimpac 478 . . . . 5 ((𝑋𝐼𝐼 = {(0g𝑃)}) → 𝑋 ∈ {(0g𝑃)})
21203ad2antl3 1187 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → 𝑋 ∈ {(0g𝑃)})
22 elsni 4623 . . . 4 (𝑋 ∈ {(0g𝑃)} → 𝑋 = (0g𝑃))
2321, 22syl 17 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → 𝑋 = (0g𝑃))
2418, 23breqtrrd 5151 . 2 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → (𝐺𝐼) 𝑋)
25 simpl1 1191 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑅 ∈ DivRing)
2625, 1syl 17 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑅 ∈ Ring)
27 simpl2 1192 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼𝑈)
2827, 8syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼 ⊆ (Base‘𝑃))
29 simpl3 1193 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑋𝐼)
3028, 29sseldd 3964 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑋 ∈ (Base‘𝑃))
31 simpr 484 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼 ≠ {(0g𝑃)})
32 eqid 2734 . . . . . . . . . . 11 (deg1𝑅) = (deg1𝑅)
33 eqid 2734 . . . . . . . . . . 11 (Monic1p𝑅) = (Monic1p𝑅)
342, 10, 15, 7, 32, 33ig1pval3 26153 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ (Monic1p𝑅) ∧ ((deg1𝑅)‘(𝐺𝐼)) = inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < )))
3525, 27, 31, 34syl3anc 1372 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ (Monic1p𝑅) ∧ ((deg1𝑅)‘(𝐺𝐼)) = inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < )))
3635simp2d 1143 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Monic1p𝑅))
37 eqid 2734 . . . . . . . . 9 (Unic1p𝑅) = (Unic1p𝑅)
3837, 33mon1puc1p 26126 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐺𝐼) ∈ (Monic1p𝑅)) → (𝐺𝐼) ∈ (Unic1p𝑅))
3926, 36, 38syl2anc 584 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Unic1p𝑅))
40 eqid 2734 . . . . . . . 8 (rem1p𝑅) = (rem1p𝑅)
4140, 2, 6, 37, 32r1pdeglt 26135 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < ((deg1𝑅)‘(𝐺𝐼)))
4226, 30, 39, 41syl3anc 1372 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < ((deg1𝑅)‘(𝐺𝐼)))
4335simp3d 1144 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝐺𝐼)) = inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ))
4442, 43breqtrd 5149 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ))
4532, 2, 6deg1xrf 26056 . . . . . . 7 (deg1𝑅):(Base‘𝑃)⟶ℝ*
4635simp1d 1142 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ 𝐼)
4728, 46sseldd 3964 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Base‘𝑃))
48 eqid 2734 . . . . . . . . . . 11 (quot1p𝑅) = (quot1p𝑅)
49 eqid 2734 . . . . . . . . . . 11 (.r𝑃) = (.r𝑃)
50 eqid 2734 . . . . . . . . . . 11 (-g𝑃) = (-g𝑃)
5140, 2, 6, 48, 49, 50r1pval 26133 . . . . . . . . . 10 ((𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Base‘𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))))
5230, 47, 51syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))))
5326, 3syl 17 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑃 ∈ Ring)
5448, 2, 6, 37q1pcl 26132 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → (𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
5526, 30, 39, 54syl3anc 1372 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
567, 6, 49lidlmcl 21197 . . . . . . . . . . 11 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ 𝐼)) → ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)
5753, 27, 55, 46, 56syl22anc 838 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)
587, 50lidlsubcl 21196 . . . . . . . . . 10 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼 ∧ ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)) → (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))) ∈ 𝐼)
5953, 27, 29, 57, 58syl22anc 838 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))) ∈ 𝐼)
6052, 59eqeltrd 2833 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼)
6128, 60sseldd 3964 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
62 ffvelcdm 7081 . . . . . . 7 (((deg1𝑅):(Base‘𝑃)⟶ℝ* ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃)) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ*)
6345, 61, 62sylancr 587 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ*)
6428ssdifd 4125 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ⊆ ((Base‘𝑃) ∖ {(0g𝑃)}))
65 imass2 6100 . . . . . . . . . 10 ((𝐼 ∖ {(0g𝑃)}) ⊆ ((Base‘𝑃) ∖ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})))
6664, 65syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})))
6732, 2, 15, 6deg1n0ima 26064 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ ℕ0)
6826, 67syl 17 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ ℕ0)
69 nn0uz 12902 . . . . . . . . . 10 0 = (ℤ‘0)
7068, 69sseqtrdi 4004 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
7166, 70sstrd 3974 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
72 uzssz 12881 . . . . . . . . 9 (ℤ‘0) ⊆ ℤ
73 zssre 12603 . . . . . . . . . 10 ℤ ⊆ ℝ
74 ressxr 11287 . . . . . . . . . 10 ℝ ⊆ ℝ*
7573, 74sstri 3973 . . . . . . . . 9 ℤ ⊆ ℝ*
7672, 75sstri 3973 . . . . . . . 8 (ℤ‘0) ⊆ ℝ*
7771, 76sstrdi 3976 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ ℝ*)
787, 15lidl0cl 21192 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → (0g𝑃) ∈ 𝐼)
7953, 27, 78syl2anc 584 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (0g𝑃) ∈ 𝐼)
8079snssd 4789 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → {(0g𝑃)} ⊆ 𝐼)
8131necomd 2986 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → {(0g𝑃)} ≠ 𝐼)
82 pssdifn0 4348 . . . . . . . . . 10 (({(0g𝑃)} ⊆ 𝐼 ∧ {(0g𝑃)} ≠ 𝐼) → (𝐼 ∖ {(0g𝑃)}) ≠ ∅)
8380, 81, 82syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ≠ ∅)
84 ffn 6716 . . . . . . . . . . . 12 ((deg1𝑅):(Base‘𝑃)⟶ℝ* → (deg1𝑅) Fn (Base‘𝑃))
8545, 84ax-mp 5 . . . . . . . . . . 11 (deg1𝑅) Fn (Base‘𝑃)
8628ssdifssd 4127 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃))
87 fnimaeq0 6681 . . . . . . . . . . 11 (((deg1𝑅) Fn (Base‘𝑃) ∧ (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃)) → (((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) = ∅ ↔ (𝐼 ∖ {(0g𝑃)}) = ∅))
8885, 86, 87sylancr 587 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) = ∅ ↔ (𝐼 ∖ {(0g𝑃)}) = ∅))
8988necon3bid 2975 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅ ↔ (𝐼 ∖ {(0g𝑃)}) ≠ ∅))
9083, 89mpbird 257 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅)
91 infssuzcl 12956 . . . . . . . 8 ((((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0) ∧ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
9271, 90, 91syl2anc 584 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
9377, 92sseldd 3964 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ℝ*)
94 xrltnle 11310 . . . . . 6 ((((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ* ∧ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ℝ*) → (((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ↔ ¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
9563, 93, 94syl2anc 584 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ↔ ¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
9644, 95mpbid 232 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
9771adantr 480 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
9860adantr 480 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼)
99 simpr 484 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃))
100 eldifsn 4766 . . . . . . . . 9 ((𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)}) ↔ ((𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼 ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)))
10198, 99, 100sylanbrc 583 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)}))
102 fnfvima 7235 . . . . . . . 8 (((deg1𝑅) Fn (Base‘𝑃) ∧ (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)})) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
10385, 86, 101, 102mp3an2ani 1469 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
104 infssuzle 12955 . . . . . . 7 ((((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0) ∧ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)}))) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
10597, 103, 104syl2anc 584 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
106105ex 412 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃) → inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
107106necon1bd 2949 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (¬ inf(((deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ ((deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
10896, 107mpd 15 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃))
1092, 14, 6, 37, 15, 40dvdsr1p 26139 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → ((𝐺𝐼) 𝑋 ↔ (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
11026, 30, 39, 109syl3anc 1372 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) 𝑋 ↔ (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
111108, 110mpbird 257 . 2 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) 𝑋)
11224, 111pm2.61dane 3018 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  cdif 3928  wss 3931  c0 4313  {csn 4606   class class class wbr 5123  cima 5668   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  infcinf 9463  cr 11136  0cc0 11137  *cxr 11276   < clt 11277  cle 11278  0cn0 12509  cz 12596  cuz 12860  Basecbs 17229  .rcmulr 17274  0gc0g 17455  -gcsg 18922  Ringcrg 20198  rcdsr 20322  DivRingcdr 20697  LIdealclidl 21178  Poly1cpl1 22126  deg1cdg1 26029  Monic1pcmn1 26101  Unic1pcuc1p 26102  quot1pcq1p 26103  rem1pcr1p 26104  idlGen1pcig1p 26105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14352  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-0g 17457  df-gsum 17458  df-prds 17463  df-pws 17465  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mhm 18765  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-mulg 19055  df-subg 19110  df-ghm 19200  df-cntz 19304  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-subrng 20514  df-subrg 20538  df-rlreg 20662  df-drng 20699  df-lmod 20828  df-lss 20898  df-sra 21140  df-rgmod 21141  df-lidl 21180  df-cnfld 21327  df-ascl 21829  df-psr 21883  df-mvr 21884  df-mpl 21885  df-opsr 21887  df-psr1 22129  df-vr1 22130  df-ply1 22131  df-coe1 22132  df-mdeg 26030  df-deg1 26031  df-mon1 26106  df-uc1p 26107  df-q1p 26108  df-r1p 26109  df-ig1p 26110
This theorem is referenced by:  ig1prsp  26156
  Copyright terms: Public domain W3C validator