Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalt2lem2 Structured version   Visualization version   GIF version

Theorem itcovalt2lem2 48838
Description: Lemma 2 for itcovalt2 48839: induction step. (Contributed by AV, 7-May-2024.)
Hypothesis
Ref Expression
itcovalt2.f 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶))
Assertion
Ref Expression
itcovalt2lem2 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))))
Distinct variable groups:   𝐶,𝑛   𝑦,𝑛
Allowed substitution hints:   𝐶(𝑦)   𝐹(𝑦,𝑛)

Proof of Theorem itcovalt2lem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 itcovalt2.f . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶))
2 nn0ex 12398 . . . . . 6 0 ∈ V
32mptex 7166 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶)) ∈ V
41, 3eqeltri 2829 . . . 4 𝐹 ∈ V
5 simpl 482 . . . 4 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝑦 ∈ ℕ0)
6 simpr 484 . . . 4 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)))
7 itcovalsucov 48830 . . . 4 ((𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))))
84, 5, 6, 7mp3an2ani 1470 . . 3 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))))
9 2nn 12209 . . . . . . . . 9 2 ∈ ℕ
109a1i 11 . . . . . . . 8 (𝑦 ∈ ℕ0 → 2 ∈ ℕ)
11 id 22 . . . . . . . 8 (𝑦 ∈ ℕ0𝑦 ∈ ℕ0)
1210, 11nnexpcld 14159 . . . . . . 7 (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℕ)
13 itcovalt2lem2lem1 48835 . . . . . . 7 ((((2↑𝑦) ∈ ℕ ∧ 𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶) ∈ ℕ0)
1412, 13sylanl1 680 . . . . . 6 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶) ∈ ℕ0)
15 eqidd 2734 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)))
16 oveq2 7363 . . . . . . . . . 10 (𝑛 = 𝑚 → (2 · 𝑛) = (2 · 𝑚))
1716oveq1d 7370 . . . . . . . . 9 (𝑛 = 𝑚 → ((2 · 𝑛) + 𝐶) = ((2 · 𝑚) + 𝐶))
1817cbvmptv 5199 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶)) = (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 𝐶))
191, 18eqtri 2756 . . . . . . 7 𝐹 = (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 𝐶))
2019a1i 11 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → 𝐹 = (𝑚 ∈ ℕ0 ↦ ((2 · 𝑚) + 𝐶)))
21 oveq2 7363 . . . . . . 7 (𝑚 = (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶) → (2 · 𝑚) = (2 · (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)))
2221oveq1d 7370 . . . . . 6 (𝑚 = (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶) → ((2 · 𝑚) + 𝐶) = ((2 · (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)) + 𝐶))
2314, 15, 20, 22fmptco 7071 . . . . 5 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) = (𝑛 ∈ ℕ0 ↦ ((2 · (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)) + 𝐶)))
24 itcovalt2lem2lem2 48836 . . . . . 6 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((2 · (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)) + 𝐶) = (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))
2524mpteq2dva 5188 . . . . 5 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑛 ∈ ℕ0 ↦ ((2 · (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)) + 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))
2623, 25eqtrd 2768 . . . 4 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))
2726adantr 480 . . 3 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → (𝐹 ∘ (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))
288, 27eqtrd 2768 . 2 (((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))
2928ex 412 1 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cmpt 5176  ccom 5625  cfv 6489  (class class class)co 7355  1c1 11018   + caddc 11020   · cmul 11022  cmin 11355  cn 12136  2c2 12191  0cn0 12392  cexp 13975  IterCompcitco 48819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-seq 13916  df-exp 13976  df-itco 48821
This theorem is referenced by:  itcovalt2  48839
  Copyright terms: Public domain W3C validator