Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  odz2prm2pw Structured version   Visualization version   GIF version

Theorem odz2prm2pw 45745
Description: Any power of two is coprime to any prime not being two. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
odz2prm2pw (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))

Proof of Theorem odz2prm2pw
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eldifi 4086 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
2 2nn 12226 . . . . . . . . 9 2 ∈ ℕ
32a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℕ)
4 2nn0 12430 . . . . . . . . . 10 2 ∈ ℕ0
54a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
6 peano2nn 12165 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
76nnnn0d 12473 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
85, 7nn0expcld 14149 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℕ0)
93, 8nnexpcld 14148 . . . . . . 7 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 + 1))) ∈ ℕ)
109nnzd 12526 . . . . . 6 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 + 1))) ∈ ℤ)
11 modprm1div 16669 . . . . . 6 ((𝑃 ∈ ℙ ∧ (2↑(2↑(𝑁 + 1))) ∈ ℤ) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1)))
121, 10, 11syl2anr 597 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1)))
13 prmnn 16550 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
141, 13syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
1514adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
16 2z 12535 . . . . . . . 8 2 ∈ ℤ
1716a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ∈ ℤ)
18 eldifsn 4747 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
19 simpr 485 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
2019necomd 2999 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 2 ≠ 𝑃)
2118, 20sylbi 216 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑃)
22 2prm 16568 . . . . . . . . . 10 2 ∈ ℙ
23 prmrp 16588 . . . . . . . . . 10 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
2422, 1, 23sylancr 587 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
2521, 24mpbird 256 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 gcd 𝑃) = 1)
2625adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 gcd 𝑃) = 1)
2715, 17, 263jca 1128 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1))
288adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(𝑁 + 1)) ∈ ℕ0)
29 odzdvds 16667 . . . . . 6 (((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ (2↑(𝑁 + 1)) ∈ ℕ0) → (𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1) ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
3027, 28, 29syl2anc 584 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1) ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
3112, 30bitrd 278 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
32 nnnn0 12420 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
335, 32nn0expcld 14149 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ0)
343, 33nnexpcld 14148 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℕ)
3534nnzd 12526 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℤ)
36 modprm1div 16669 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (2↑(2↑𝑁)) ∈ ℤ) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑𝑁)) − 1)))
371, 35, 36syl2anr 597 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑𝑁)) − 1)))
3833adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑𝑁) ∈ ℕ0)
39 odzdvds 16667 . . . . . . . . 9 (((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ (2↑𝑁) ∈ ℕ0) → (𝑃 ∥ ((2↑(2↑𝑁)) − 1) ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4027, 38, 39syl2anc 584 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ ((2↑(2↑𝑁)) − 1) ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4137, 40bitrd 278 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4241necon3abid 2980 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ↔ ¬ ((od𝑃)‘2) ∥ (2↑𝑁)))
43 odzcl 16665 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) → ((od𝑃)‘2) ∈ ℕ)
4427, 43syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((od𝑃)‘2) ∈ ℕ)
457adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑁 + 1) ∈ ℕ0)
46 dvdsprmpweqle 16758 . . . . . . . . 9 ((2 ∈ ℙ ∧ ((od𝑃)‘2) ∈ ℕ ∧ (𝑁 + 1) ∈ ℕ0) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛))))
4722, 44, 45, 46mp3an2i 1466 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛))))
48 breq1 5108 . . . . . . . . . . . . 13 (((od𝑃)‘2) = (2↑𝑛) → (((od𝑃)‘2) ∥ (2↑𝑁) ↔ (2↑𝑛) ∥ (2↑𝑁)))
4948adantl 482 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (((od𝑃)‘2) ∥ (2↑𝑁) ↔ (2↑𝑛) ∥ (2↑𝑁)))
5049notbid 317 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) ↔ ¬ (2↑𝑛) ∥ (2↑𝑁)))
51 simpr 485 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → ((od𝑃)‘2) = (2↑𝑛))
5251adantr 481 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → ((od𝑃)‘2) = (2↑𝑛))
53 nn0re 12422 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
546nnred 12168 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
5554adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑁 + 1) ∈ ℝ)
56 leloe 11241 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → (𝑛 ≤ (𝑁 + 1) ↔ (𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1))))
5753, 55, 56syl2anr 597 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑁 + 1) ↔ (𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1))))
58 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
59 nn0z 12524 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
6059adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
6160adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑛 ∈ ℤ)
62 nnz 12520 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
6362adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑁 ∈ ℤ)
6463adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℤ)
6564adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑁 ∈ ℤ)
66 zleltp1 12554 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑛𝑁𝑛 < (𝑁 + 1)))
6759, 63, 66syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛𝑁𝑛 < (𝑁 + 1)))
6867biimpar 478 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑛𝑁)
69 eluz2 12769 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ𝑛) ↔ (𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑛𝑁))
7061, 65, 68, 69syl3anbrc 1343 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑁 ∈ (ℤ𝑛))
71 dvdsexp 16210 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℤ ∧ 𝑛 ∈ ℕ0𝑁 ∈ (ℤ𝑛)) → (2↑𝑛) ∥ (2↑𝑁))
7216, 58, 70, 71mp3an2ani 1468 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → (2↑𝑛) ∥ (2↑𝑁))
7372pm2.24d 151 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
7473expcom 414 . . . . . . . . . . . . . . . . . . 19 (𝑛 < (𝑁 + 1) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
75 oveq2 7365 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑁 + 1) → (2↑𝑛) = (2↑(𝑁 + 1)))
76752a1d 26 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑁 + 1) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7774, 76jaoi 855 . . . . . . . . . . . . . . . . . 18 ((𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1)) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7877com12 32 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → ((𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7957, 78sylbid 239 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑁 + 1) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
8079imp 407 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
8180adantr 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
8281imp 407 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → (2↑𝑛) = (2↑(𝑁 + 1)))
8352, 82eqtrd 2776 . . . . . . . . . . . 12 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
8483ex 413 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
8550, 84sylbid 239 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
8685expl 458 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8786rexlimdva 3152 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8847, 87syld 47 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8988com23 86 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9042, 89sylbid 239 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9190com23 86 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9231, 91sylbid 239 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9392com23 86 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9493imp32 419 1 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cdif 3907  {csn 4586   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763   mod cmo 13774  cexp 13967  cdvds 16136   gcd cgcd 16374  cprime 16547  odcodz 16635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548  df-odz 16637  df-phi 16638  df-pc 16709
This theorem is referenced by:  fmtnoprmfac1lem  45746
  Copyright terms: Public domain W3C validator