Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  odz2prm2pw Structured version   Visualization version   GIF version

Theorem odz2prm2pw 47135
Description: Any power of two is coprime to any prime not being two. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
odz2prm2pw (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))

Proof of Theorem odz2prm2pw
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 eldifi 4126 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
2 2nn 12337 . . . . . . . . 9 2 ∈ ℕ
32a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℕ)
4 2nn0 12541 . . . . . . . . . 10 2 ∈ ℕ0
54a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
6 peano2nn 12276 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
76nnnn0d 12584 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
85, 7nn0expcld 14263 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℕ0)
93, 8nnexpcld 14262 . . . . . . 7 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 + 1))) ∈ ℕ)
109nnzd 12637 . . . . . 6 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 + 1))) ∈ ℤ)
11 modprm1div 16799 . . . . . 6 ((𝑃 ∈ ℙ ∧ (2↑(2↑(𝑁 + 1))) ∈ ℤ) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1)))
121, 10, 11syl2anr 595 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1)))
13 prmnn 16675 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
141, 13syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
1514adantl 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
16 2z 12646 . . . . . . . 8 2 ∈ ℤ
1716a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ∈ ℤ)
18 eldifsn 4795 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
19 simpr 483 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
2019necomd 2986 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 2 ≠ 𝑃)
2118, 20sylbi 216 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 2 ≠ 𝑃)
22 2prm 16693 . . . . . . . . . 10 2 ∈ ℙ
23 prmrp 16713 . . . . . . . . . 10 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
2422, 1, 23sylancr 585 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
2521, 24mpbird 256 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → (2 gcd 𝑃) = 1)
2625adantl 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 gcd 𝑃) = 1)
2715, 17, 263jca 1125 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1))
288adantr 479 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(𝑁 + 1)) ∈ ℕ0)
29 odzdvds 16797 . . . . . 6 (((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ (2↑(𝑁 + 1)) ∈ ℕ0) → (𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1) ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
3027, 28, 29syl2anc 582 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ ((2↑(2↑(𝑁 + 1))) − 1) ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
3112, 30bitrd 278 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 ↔ ((od𝑃)‘2) ∥ (2↑(𝑁 + 1))))
32 nnnn0 12531 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
335, 32nn0expcld 14263 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ0)
343, 33nnexpcld 14262 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℕ)
3534nnzd 12637 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℤ)
36 modprm1div 16799 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (2↑(2↑𝑁)) ∈ ℤ) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑𝑁)) − 1)))
371, 35, 36syl2anr 595 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑(2↑𝑁)) − 1)))
3833adantr 479 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑𝑁) ∈ ℕ0)
39 odzdvds 16797 . . . . . . . . 9 (((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ (2↑𝑁) ∈ ℕ0) → (𝑃 ∥ ((2↑(2↑𝑁)) − 1) ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4027, 38, 39syl2anc 582 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ ((2↑(2↑𝑁)) − 1) ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4137, 40bitrd 278 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ ((od𝑃)‘2) ∥ (2↑𝑁)))
4241necon3abid 2967 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ↔ ¬ ((od𝑃)‘2) ∥ (2↑𝑁)))
43 odzcl 16795 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) → ((od𝑃)‘2) ∈ ℕ)
4427, 43syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((od𝑃)‘2) ∈ ℕ)
457adantr 479 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑁 + 1) ∈ ℕ0)
46 dvdsprmpweqle 16888 . . . . . . . . 9 ((2 ∈ ℙ ∧ ((od𝑃)‘2) ∈ ℕ ∧ (𝑁 + 1) ∈ ℕ0) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛))))
4722, 44, 45, 46mp3an2i 1463 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛))))
48 breq1 5156 . . . . . . . . . . . . 13 (((od𝑃)‘2) = (2↑𝑛) → (((od𝑃)‘2) ∥ (2↑𝑁) ↔ (2↑𝑛) ∥ (2↑𝑁)))
4948adantl 480 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (((od𝑃)‘2) ∥ (2↑𝑁) ↔ (2↑𝑛) ∥ (2↑𝑁)))
5049notbid 317 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) ↔ ¬ (2↑𝑛) ∥ (2↑𝑁)))
51 simpr 483 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → ((od𝑃)‘2) = (2↑𝑛))
5251adantr 479 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → ((od𝑃)‘2) = (2↑𝑛))
53 nn0re 12533 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
546nnred 12279 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
5554adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑁 + 1) ∈ ℝ)
56 leloe 11350 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → (𝑛 ≤ (𝑁 + 1) ↔ (𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1))))
5753, 55, 56syl2anr 595 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑁 + 1) ↔ (𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1))))
58 simpr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
59 nn0z 12635 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
6059adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
6160adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑛 ∈ ℤ)
62 nnz 12631 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
6362adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑁 ∈ ℤ)
6463adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℤ)
6564adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑁 ∈ ℤ)
66 zleltp1 12665 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑛𝑁𝑛 < (𝑁 + 1)))
6759, 63, 66syl2anr 595 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛𝑁𝑛 < (𝑁 + 1)))
6867biimpar 476 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑛𝑁)
69 eluz2 12880 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ𝑛) ↔ (𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑛𝑁))
7061, 65, 68, 69syl3anbrc 1340 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → 𝑁 ∈ (ℤ𝑛))
71 dvdsexp 16330 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℤ ∧ 𝑛 ∈ ℕ0𝑁 ∈ (ℤ𝑛)) → (2↑𝑛) ∥ (2↑𝑁))
7216, 58, 70, 71mp3an2ani 1465 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → (2↑𝑛) ∥ (2↑𝑁))
7372pm2.24d 151 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
7473expcom 412 . . . . . . . . . . . . . . . . . . 19 (𝑛 < (𝑁 + 1) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
75 oveq2 7432 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑁 + 1) → (2↑𝑛) = (2↑(𝑁 + 1)))
76752a1d 26 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑁 + 1) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7774, 76jaoi 855 . . . . . . . . . . . . . . . . . 18 ((𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1)) → (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7877com12 32 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → ((𝑛 < (𝑁 + 1) ∨ 𝑛 = (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
7957, 78sylbid 239 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑁 + 1) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1)))))
8079imp 405 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
8180adantr 479 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → (2↑𝑛) = (2↑(𝑁 + 1))))
8281imp 405 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → (2↑𝑛) = (2↑(𝑁 + 1)))
8352, 82eqtrd 2766 . . . . . . . . . . . 12 ((((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) ∧ ¬ (2↑𝑛) ∥ (2↑𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
8483ex 411 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ (2↑𝑛) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
8550, 84sylbid 239 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 ≤ (𝑁 + 1)) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
8685expl 456 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8786rexlimdva 3145 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (∃𝑛 ∈ ℕ0 (𝑛 ≤ (𝑁 + 1) ∧ ((od𝑃)‘2) = (2↑𝑛)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8847, 87syld 47 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
8988com23 86 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (¬ ((od𝑃)‘2) ∥ (2↑𝑁) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9042, 89sylbid 239 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9190com23 86 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((od𝑃)‘2) ∥ (2↑(𝑁 + 1)) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9231, 91sylbid 239 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9392com23 86 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9493imp32 417 1 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wrex 3060  cdif 3944  {csn 4633   class class class wbr 5153  cfv 6554  (class class class)co 7424  cr 11157  1c1 11159   + caddc 11161   < clt 11298  cle 11299  cmin 11494  cn 12264  2c2 12319  0cn0 12524  cz 12610  cuz 12874   mod cmo 13889  cexp 14081  cdvds 16256   gcd cgcd 16494  cprime 16672  odcodz 16765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12597  df-z 12611  df-uz 12875  df-q 12985  df-rp 13029  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-dvds 16257  df-gcd 16495  df-prm 16673  df-odz 16767  df-phi 16768  df-pc 16839
This theorem is referenced by:  fmtnoprmfac1lem  47136
  Copyright terms: Public domain W3C validator