![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brabg2 | Structured version Visualization version GIF version |
Description: Relation by a binary relation abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
brabg2.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
brabg2.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
brabg2.3 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
brabg2.4 | ⊢ (𝜒 → 𝐴 ∈ 𝐶) |
Ref | Expression |
---|---|
brabg2 | ⊢ (𝐵 ∈ 𝐷 → (𝐴𝑅𝐵 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brabg2.3 | . . . . 5 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 1 | relopabiv 5844 | . . . 4 ⊢ Rel 𝑅 |
3 | 2 | brrelex1i 5756 | . . 3 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
4 | brabg2.1 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | brabg2.2 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
6 | 4, 5, 1 | brabg 5558 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜒)) |
7 | 6 | biimpd 229 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 → 𝜒)) |
8 | 7 | ex 412 | . . . 4 ⊢ (𝐴 ∈ V → (𝐵 ∈ 𝐷 → (𝐴𝑅𝐵 → 𝜒))) |
9 | 8 | com3l 89 | . . 3 ⊢ (𝐵 ∈ 𝐷 → (𝐴𝑅𝐵 → (𝐴 ∈ V → 𝜒))) |
10 | 3, 9 | mpdi 45 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴𝑅𝐵 → 𝜒)) |
11 | brabg2.4 | . . 3 ⊢ (𝜒 → 𝐴 ∈ 𝐶) | |
12 | 4, 5, 1 | brabg 5558 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜒)) |
13 | 12 | exbiri 810 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (𝜒 → 𝐴𝑅𝐵))) |
14 | 13 | com3l 89 | . . 3 ⊢ (𝐵 ∈ 𝐷 → (𝜒 → (𝐴 ∈ 𝐶 → 𝐴𝑅𝐵))) |
15 | 11, 14 | mpdi 45 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝜒 → 𝐴𝑅𝐵)) |
16 | 10, 15 | impbid 212 | 1 ⊢ (𝐵 ∈ 𝐷 → (𝐴𝑅𝐵 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |