Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabg2 Structured version   Visualization version   GIF version

Theorem brabg2 37724
Description: Relation by a binary relation abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
brabg2.1 (𝑥 = 𝐴 → (𝜑𝜓))
brabg2.2 (𝑦 = 𝐵 → (𝜓𝜒))
brabg2.3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
brabg2.4 (𝜒𝐴𝐶)
Assertion
Ref Expression
brabg2 (𝐵𝐷 → (𝐴𝑅𝐵𝜒))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brabg2
StepHypRef Expression
1 brabg2.3 . . . . 5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
21relopabiv 5830 . . . 4 Rel 𝑅
32brrelex1i 5741 . . 3 (𝐴𝑅𝐵𝐴 ∈ V)
4 brabg2.1 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
5 brabg2.2 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
64, 5, 1brabg 5544 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵𝐷) → (𝐴𝑅𝐵𝜒))
76biimpd 229 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷) → (𝐴𝑅𝐵𝜒))
87ex 412 . . . 4 (𝐴 ∈ V → (𝐵𝐷 → (𝐴𝑅𝐵𝜒)))
98com3l 89 . . 3 (𝐵𝐷 → (𝐴𝑅𝐵 → (𝐴 ∈ V → 𝜒)))
103, 9mpdi 45 . 2 (𝐵𝐷 → (𝐴𝑅𝐵𝜒))
11 brabg2.4 . . 3 (𝜒𝐴𝐶)
124, 5, 1brabg 5544 . . . . 5 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜒))
1312exbiri 811 . . . 4 (𝐴𝐶 → (𝐵𝐷 → (𝜒𝐴𝑅𝐵)))
1413com3l 89 . . 3 (𝐵𝐷 → (𝜒 → (𝐴𝐶𝐴𝑅𝐵)))
1511, 14mpdi 45 . 2 (𝐵𝐷 → (𝜒𝐴𝑅𝐵))
1610, 15impbid 212 1 (𝐵𝐷 → (𝐴𝑅𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480   class class class wbr 5143  {copab 5205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator