MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem7 Structured version   Visualization version   GIF version

Theorem fpwwe2lem7 10629
Description: Lemma for fpwwe2 10635. Show by induction that the two isometries 𝑀 and 𝑁 agree on their common domain. (Contributed by Mario Carneiro, 15-May-2015.) (Proof shortened by Peter Mazsa, 23-Sep-2022.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2lem8.x (𝜑𝑋𝑊𝑅)
fpwwe2lem8.y (𝜑𝑌𝑊𝑆)
fpwwe2lem8.m 𝑀 = OrdIso(𝑅, 𝑋)
fpwwe2lem8.n 𝑁 = OrdIso(𝑆, 𝑌)
fpwwe2lem8.s (𝜑 → dom 𝑀 ⊆ dom 𝑁)
Assertion
Ref Expression
fpwwe2lem7 (𝜑𝑀 = (𝑁 ↾ dom 𝑀))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝑀,𝑟,𝑢,𝑥,𝑦   𝑁,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑌,𝑟,𝑢,𝑥,𝑦   𝑆,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem7
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwwe2lem8.m . . . 4 𝑀 = OrdIso(𝑅, 𝑋)
21oif 9522 . . 3 𝑀:dom 𝑀𝑋
3 ffn 6715 . . 3 (𝑀:dom 𝑀𝑋𝑀 Fn dom 𝑀)
42, 3mp1i 13 . 2 (𝜑𝑀 Fn dom 𝑀)
5 fpwwe2lem8.n . . . . 5 𝑁 = OrdIso(𝑆, 𝑌)
65oif 9522 . . . 4 𝑁:dom 𝑁𝑌
7 ffn 6715 . . . 4 (𝑁:dom 𝑁𝑌𝑁 Fn dom 𝑁)
86, 7mp1i 13 . . 3 (𝜑𝑁 Fn dom 𝑁)
9 fpwwe2lem8.s . . 3 (𝜑 → dom 𝑀 ⊆ dom 𝑁)
108, 9fnssresd 6672 . 2 (𝜑 → (𝑁 ↾ dom 𝑀) Fn dom 𝑀)
111oicl 9521 . . . . . 6 Ord dom 𝑀
12 ordelon 6386 . . . . . 6 ((Ord dom 𝑀𝑤 ∈ dom 𝑀) → 𝑤 ∈ On)
1311, 12mpan 689 . . . . 5 (𝑤 ∈ dom 𝑀𝑤 ∈ On)
14 eleq1w 2817 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 ∈ dom 𝑀𝑦 ∈ dom 𝑀))
15 fveq2 6889 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑀𝑤) = (𝑀𝑦))
16 fveq2 6889 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑁𝑤) = (𝑁𝑦))
1715, 16eqeq12d 2749 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑀𝑤) = (𝑁𝑤) ↔ (𝑀𝑦) = (𝑁𝑦)))
1814, 17imbi12d 345 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤)) ↔ (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))))
1918imbi2d 341 . . . . . . 7 (𝑤 = 𝑦 → ((𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))) ↔ (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)))))
20 r19.21v 3180 . . . . . . . . 9 (∀𝑦𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) ↔ (𝜑 → ∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))))
2111a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → Ord dom 𝑀)
22 ordelss 6378 . . . . . . . . . . . . . . . . 17 ((Ord dom 𝑀𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑀)
2321, 22sylan 581 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑀)
2423sselda 3982 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ dom 𝑀) ∧ 𝑦𝑤) → 𝑦 ∈ dom 𝑀)
25 pm2.27 42 . . . . . . . . . . . . . . 15 (𝑦 ∈ dom 𝑀 → ((𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑦) = (𝑁𝑦)))
2624, 25syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ dom 𝑀) ∧ 𝑦𝑤) → ((𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑦) = (𝑁𝑦)))
2726ralimdva 3168 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ dom 𝑀) → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → ∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦)))
28 fnssres 6671 . . . . . . . . . . . . . . . . 17 ((𝑀 Fn dom 𝑀𝑤 ⊆ dom 𝑀) → (𝑀𝑤) Fn 𝑤)
294, 23, 28syl2an2r 684 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) Fn 𝑤)
309adantr 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ dom 𝑀) → dom 𝑀 ⊆ dom 𝑁)
3123, 30sstrd 3992 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑁)
32 fnssres 6671 . . . . . . . . . . . . . . . . 17 ((𝑁 Fn dom 𝑁𝑤 ⊆ dom 𝑁) → (𝑁𝑤) Fn 𝑤)
338, 31, 32syl2an2r 684 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ dom 𝑀) → (𝑁𝑤) Fn 𝑤)
34 eqfnfv 7030 . . . . . . . . . . . . . . . 16 (((𝑀𝑤) Fn 𝑤 ∧ (𝑁𝑤) Fn 𝑤) → ((𝑀𝑤) = (𝑁𝑤) ↔ ∀𝑦𝑤 ((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦)))
3529, 33, 34syl2anc 585 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑀𝑤) = (𝑁𝑤) ↔ ∀𝑦𝑤 ((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦)))
36 fvres 6908 . . . . . . . . . . . . . . . . 17 (𝑦𝑤 → ((𝑀𝑤)‘𝑦) = (𝑀𝑦))
37 fvres 6908 . . . . . . . . . . . . . . . . 17 (𝑦𝑤 → ((𝑁𝑤)‘𝑦) = (𝑁𝑦))
3836, 37eqeq12d 2749 . . . . . . . . . . . . . . . 16 (𝑦𝑤 → (((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦) ↔ (𝑀𝑦) = (𝑁𝑦)))
3938ralbiia 3092 . . . . . . . . . . . . . . 15 (∀𝑦𝑤 ((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦) ↔ ∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦))
4035, 39bitrdi 287 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑀𝑤) = (𝑁𝑤) ↔ ∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦)))
41 fpwwe2.1 . . . . . . . . . . . . . . . . . . . . . 22 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
42 fpwwe2.2 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴𝑉)
4342ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝐴𝑉)
44 simpll 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝜑)
45 fpwwe2.3 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
4644, 45sylan 581 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
47 fpwwe2lem8.x . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋𝑊𝑅)
4847ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑋𝑊𝑅)
49 fpwwe2lem8.y . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑌𝑊𝑆)
5049ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑌𝑊𝑆)
51 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑤 ∈ dom 𝑀)
529sselda 3982 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ dom 𝑀) → 𝑤 ∈ dom 𝑁)
5352adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑤 ∈ dom 𝑁)
54 simpr 486 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑀𝑤) = (𝑁𝑤))
5541, 43, 46, 48, 50, 1, 5, 51, 53, 54fpwwe2lem6 10628 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑅(𝑀𝑤)) → (𝑦𝑆(𝑁𝑤) ∧ (𝑧𝑅(𝑀𝑤) → (𝑦𝑅𝑧𝑦𝑆𝑧))))
5655simpld 496 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑅(𝑀𝑤)) → 𝑦𝑆(𝑁𝑤))
5754eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑁𝑤) = (𝑀𝑤))
5841, 43, 46, 50, 48, 5, 1, 53, 51, 57fpwwe2lem6 10628 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑆(𝑁𝑤)) → (𝑦𝑅(𝑀𝑤) ∧ (𝑧𝑆(𝑁𝑤) → (𝑦𝑆𝑧𝑦𝑅𝑧))))
5958simpld 496 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑆(𝑁𝑤)) → 𝑦𝑅(𝑀𝑤))
6056, 59impbida 800 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑦𝑅(𝑀𝑤) ↔ 𝑦𝑆(𝑁𝑤)))
61 fvex 6902 . . . . . . . . . . . . . . . . . . . 20 (𝑀𝑤) ∈ V
62 vex 3479 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
6362eliniseg 6091 . . . . . . . . . . . . . . . . . . . 20 ((𝑀𝑤) ∈ V → (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑦𝑅(𝑀𝑤)))
6461, 63ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑦𝑅(𝑀𝑤))
65 fvex 6902 . . . . . . . . . . . . . . . . . . . 20 (𝑁𝑤) ∈ V
6662eliniseg 6091 . . . . . . . . . . . . . . . . . . . 20 ((𝑁𝑤) ∈ V → (𝑦 ∈ (𝑆 “ {(𝑁𝑤)}) ↔ 𝑦𝑆(𝑁𝑤)))
6765, 66ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑆 “ {(𝑁𝑤)}) ↔ 𝑦𝑆(𝑁𝑤))
6860, 64, 673bitr4g 314 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑦 ∈ (𝑆 “ {(𝑁𝑤)})))
6968eqrdv 2731 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑅 “ {(𝑀𝑤)}) = (𝑆 “ {(𝑁𝑤)}))
70 relinxp 5813 . . . . . . . . . . . . . . . . . . 19 Rel (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))
71 relinxp 5813 . . . . . . . . . . . . . . . . . . 19 Rel (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))
72 vex 3479 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 ∈ V
7372eliniseg 6091 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀𝑤) ∈ V → (𝑧 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑧𝑅(𝑀𝑤)))
7463, 73anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀𝑤) ∈ V → ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ↔ (𝑦𝑅(𝑀𝑤) ∧ 𝑧𝑅(𝑀𝑤))))
7561, 74ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ↔ (𝑦𝑅(𝑀𝑤) ∧ 𝑧𝑅(𝑀𝑤)))
7655simprd 497 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑅(𝑀𝑤)) → (𝑧𝑅(𝑀𝑤) → (𝑦𝑅𝑧𝑦𝑆𝑧)))
7776impr 456 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ (𝑦𝑅(𝑀𝑤) ∧ 𝑧𝑅(𝑀𝑤))) → (𝑦𝑅𝑧𝑦𝑆𝑧))
7875, 77sylan2b 595 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)}))) → (𝑦𝑅𝑧𝑦𝑆𝑧))
7978pm5.32da 580 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑅𝑧) ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑆𝑧)))
80 df-br 5149 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))))
81 brinxp2 5752 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑅𝑧))
8280, 81bitr3i 277 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑅𝑧))
83 df-br 5149 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))))
84 brinxp2 5752 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑆𝑧))
8583, 84bitr3i 277 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑆𝑧))
8679, 82, 853bitr4g 314 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))))
8770, 71, 86eqrelrdv 5791 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) = (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))))
8869sqxpeqd 5708 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})) = ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))
8988ineq2d 4212 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) = (𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)}))))
9087, 89eqtrd 2773 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) = (𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)}))))
9169, 90oveq12d 7424 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑅 “ {(𝑀𝑤)})𝐹(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))) = ((𝑆 “ {(𝑁𝑤)})𝐹(𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))))
922ffvelcdmi 7083 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ dom 𝑀 → (𝑀𝑤) ∈ 𝑋)
9392adantl 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) ∈ 𝑋)
9493adantr 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑀𝑤) ∈ 𝑋)
9541, 42, 47fpwwe2lem3 10625 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑀𝑤) ∈ 𝑋) → ((𝑅 “ {(𝑀𝑤)})𝐹(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))) = (𝑀𝑤))
9644, 94, 95syl2anc 585 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑅 “ {(𝑀𝑤)})𝐹(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))) = (𝑀𝑤))
976ffvelcdmi 7083 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ dom 𝑁 → (𝑁𝑤) ∈ 𝑌)
9852, 97syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ dom 𝑀) → (𝑁𝑤) ∈ 𝑌)
9998adantr 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑁𝑤) ∈ 𝑌)
10041, 42, 49fpwwe2lem3 10625 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑁𝑤) ∈ 𝑌) → ((𝑆 “ {(𝑁𝑤)})𝐹(𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))) = (𝑁𝑤))
10144, 99, 100syl2anc 585 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑆 “ {(𝑁𝑤)})𝐹(𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))) = (𝑁𝑤))
10291, 96, 1013eqtr3d 2781 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑀𝑤) = (𝑁𝑤))
103102ex 414 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑀𝑤) = (𝑁𝑤) → (𝑀𝑤) = (𝑁𝑤)))
10440, 103sylbird 260 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ dom 𝑀) → (∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦) → (𝑀𝑤) = (𝑁𝑤)))
10527, 104syld 47 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ dom 𝑀) → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑤) = (𝑁𝑤)))
106105ex 414 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ dom 𝑀 → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑤) = (𝑁𝑤))))
107106com23 86 . . . . . . . . . 10 (𝜑 → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
108107a2i 14 . . . . . . . . 9 ((𝜑 → ∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
10920, 108sylbi 216 . . . . . . . 8 (∀𝑦𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
110109a1i 11 . . . . . . 7 (𝑤 ∈ On → (∀𝑦𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤)))))
11119, 110tfis2 7843 . . . . . 6 (𝑤 ∈ On → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
112111com3l 89 . . . . 5 (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑤 ∈ On → (𝑀𝑤) = (𝑁𝑤))))
11313, 112mpdi 45 . . . 4 (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤)))
114113imp 408 . . 3 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) = (𝑁𝑤))
115 fvres 6908 . . . 4 (𝑤 ∈ dom 𝑀 → ((𝑁 ↾ dom 𝑀)‘𝑤) = (𝑁𝑤))
116115adantl 483 . . 3 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑁 ↾ dom 𝑀)‘𝑤) = (𝑁𝑤))
117114, 116eqtr4d 2776 . 2 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) = ((𝑁 ↾ dom 𝑀)‘𝑤))
1184, 10, 117eqfnfvd 7033 1 (𝜑𝑀 = (𝑁 ↾ dom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  [wsbc 3777  cin 3947  wss 3948  {csn 4628  cop 4634   class class class wbr 5148  {copab 5210   We wwe 5630   × cxp 5674  ccnv 5675  dom cdm 5676  cres 5678  cima 5679  Ord word 6361  Oncon0 6362   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7406  OrdIsocoi 9501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-oi 9502
This theorem is referenced by:  fpwwe2lem8  10630
  Copyright terms: Public domain W3C validator