MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem7 Structured version   Visualization version   GIF version

Theorem fpwwe2lem7 10658
Description: Lemma for fpwwe2 10664. Show by induction that the two isometries 𝑀 and 𝑁 agree on their common domain. (Contributed by Mario Carneiro, 15-May-2015.) (Proof shortened by Peter Mazsa, 23-Sep-2022.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2lem8.x (𝜑𝑋𝑊𝑅)
fpwwe2lem8.y (𝜑𝑌𝑊𝑆)
fpwwe2lem8.m 𝑀 = OrdIso(𝑅, 𝑋)
fpwwe2lem8.n 𝑁 = OrdIso(𝑆, 𝑌)
fpwwe2lem8.s (𝜑 → dom 𝑀 ⊆ dom 𝑁)
Assertion
Ref Expression
fpwwe2lem7 (𝜑𝑀 = (𝑁 ↾ dom 𝑀))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝑀,𝑟,𝑢,𝑥,𝑦   𝑁,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑌,𝑟,𝑢,𝑥,𝑦   𝑆,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem7
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwwe2lem8.m . . . 4 𝑀 = OrdIso(𝑅, 𝑋)
21oif 9551 . . 3 𝑀:dom 𝑀𝑋
3 ffn 6716 . . 3 (𝑀:dom 𝑀𝑋𝑀 Fn dom 𝑀)
42, 3mp1i 13 . 2 (𝜑𝑀 Fn dom 𝑀)
5 fpwwe2lem8.n . . . . 5 𝑁 = OrdIso(𝑆, 𝑌)
65oif 9551 . . . 4 𝑁:dom 𝑁𝑌
7 ffn 6716 . . . 4 (𝑁:dom 𝑁𝑌𝑁 Fn dom 𝑁)
86, 7mp1i 13 . . 3 (𝜑𝑁 Fn dom 𝑁)
9 fpwwe2lem8.s . . 3 (𝜑 → dom 𝑀 ⊆ dom 𝑁)
108, 9fnssresd 6673 . 2 (𝜑 → (𝑁 ↾ dom 𝑀) Fn dom 𝑀)
111oicl 9550 . . . . . 6 Ord dom 𝑀
12 ordelon 6388 . . . . . 6 ((Ord dom 𝑀𝑤 ∈ dom 𝑀) → 𝑤 ∈ On)
1311, 12mpan 688 . . . . 5 (𝑤 ∈ dom 𝑀𝑤 ∈ On)
14 eleq1w 2808 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 ∈ dom 𝑀𝑦 ∈ dom 𝑀))
15 fveq2 6891 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑀𝑤) = (𝑀𝑦))
16 fveq2 6891 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑁𝑤) = (𝑁𝑦))
1715, 16eqeq12d 2741 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑀𝑤) = (𝑁𝑤) ↔ (𝑀𝑦) = (𝑁𝑦)))
1814, 17imbi12d 343 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤)) ↔ (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))))
1918imbi2d 339 . . . . . . 7 (𝑤 = 𝑦 → ((𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))) ↔ (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)))))
20 r19.21v 3170 . . . . . . . . 9 (∀𝑦𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) ↔ (𝜑 → ∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))))
2111a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → Ord dom 𝑀)
22 ordelss 6380 . . . . . . . . . . . . . . . . 17 ((Ord dom 𝑀𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑀)
2321, 22sylan 578 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑀)
2423sselda 3972 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ dom 𝑀) ∧ 𝑦𝑤) → 𝑦 ∈ dom 𝑀)
25 pm2.27 42 . . . . . . . . . . . . . . 15 (𝑦 ∈ dom 𝑀 → ((𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑦) = (𝑁𝑦)))
2624, 25syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ dom 𝑀) ∧ 𝑦𝑤) → ((𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑦) = (𝑁𝑦)))
2726ralimdva 3157 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ dom 𝑀) → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → ∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦)))
28 fnssres 6672 . . . . . . . . . . . . . . . . 17 ((𝑀 Fn dom 𝑀𝑤 ⊆ dom 𝑀) → (𝑀𝑤) Fn 𝑤)
294, 23, 28syl2an2r 683 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) Fn 𝑤)
309adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ dom 𝑀) → dom 𝑀 ⊆ dom 𝑁)
3123, 30sstrd 3983 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑁)
32 fnssres 6672 . . . . . . . . . . . . . . . . 17 ((𝑁 Fn dom 𝑁𝑤 ⊆ dom 𝑁) → (𝑁𝑤) Fn 𝑤)
338, 31, 32syl2an2r 683 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ dom 𝑀) → (𝑁𝑤) Fn 𝑤)
34 eqfnfv 7034 . . . . . . . . . . . . . . . 16 (((𝑀𝑤) Fn 𝑤 ∧ (𝑁𝑤) Fn 𝑤) → ((𝑀𝑤) = (𝑁𝑤) ↔ ∀𝑦𝑤 ((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦)))
3529, 33, 34syl2anc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑀𝑤) = (𝑁𝑤) ↔ ∀𝑦𝑤 ((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦)))
36 fvres 6910 . . . . . . . . . . . . . . . . 17 (𝑦𝑤 → ((𝑀𝑤)‘𝑦) = (𝑀𝑦))
37 fvres 6910 . . . . . . . . . . . . . . . . 17 (𝑦𝑤 → ((𝑁𝑤)‘𝑦) = (𝑁𝑦))
3836, 37eqeq12d 2741 . . . . . . . . . . . . . . . 16 (𝑦𝑤 → (((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦) ↔ (𝑀𝑦) = (𝑁𝑦)))
3938ralbiia 3081 . . . . . . . . . . . . . . 15 (∀𝑦𝑤 ((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦) ↔ ∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦))
4035, 39bitrdi 286 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑀𝑤) = (𝑁𝑤) ↔ ∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦)))
41 fpwwe2.1 . . . . . . . . . . . . . . . . . . . . . 22 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
42 fpwwe2.2 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴𝑉)
4342ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝐴𝑉)
44 simpll 765 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝜑)
45 fpwwe2.3 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
4644, 45sylan 578 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
47 fpwwe2lem8.x . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋𝑊𝑅)
4847ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑋𝑊𝑅)
49 fpwwe2lem8.y . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑌𝑊𝑆)
5049ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑌𝑊𝑆)
51 simplr 767 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑤 ∈ dom 𝑀)
529sselda 3972 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ dom 𝑀) → 𝑤 ∈ dom 𝑁)
5352adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑤 ∈ dom 𝑁)
54 simpr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑀𝑤) = (𝑁𝑤))
5541, 43, 46, 48, 50, 1, 5, 51, 53, 54fpwwe2lem6 10657 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑅(𝑀𝑤)) → (𝑦𝑆(𝑁𝑤) ∧ (𝑧𝑅(𝑀𝑤) → (𝑦𝑅𝑧𝑦𝑆𝑧))))
5655simpld 493 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑅(𝑀𝑤)) → 𝑦𝑆(𝑁𝑤))
5754eqcomd 2731 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑁𝑤) = (𝑀𝑤))
5841, 43, 46, 50, 48, 5, 1, 53, 51, 57fpwwe2lem6 10657 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑆(𝑁𝑤)) → (𝑦𝑅(𝑀𝑤) ∧ (𝑧𝑆(𝑁𝑤) → (𝑦𝑆𝑧𝑦𝑅𝑧))))
5958simpld 493 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑆(𝑁𝑤)) → 𝑦𝑅(𝑀𝑤))
6056, 59impbida 799 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑦𝑅(𝑀𝑤) ↔ 𝑦𝑆(𝑁𝑤)))
61 fvex 6904 . . . . . . . . . . . . . . . . . . . 20 (𝑀𝑤) ∈ V
62 vex 3467 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
6362eliniseg 6093 . . . . . . . . . . . . . . . . . . . 20 ((𝑀𝑤) ∈ V → (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑦𝑅(𝑀𝑤)))
6461, 63ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑦𝑅(𝑀𝑤))
65 fvex 6904 . . . . . . . . . . . . . . . . . . . 20 (𝑁𝑤) ∈ V
6662eliniseg 6093 . . . . . . . . . . . . . . . . . . . 20 ((𝑁𝑤) ∈ V → (𝑦 ∈ (𝑆 “ {(𝑁𝑤)}) ↔ 𝑦𝑆(𝑁𝑤)))
6765, 66ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑆 “ {(𝑁𝑤)}) ↔ 𝑦𝑆(𝑁𝑤))
6860, 64, 673bitr4g 313 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑦 ∈ (𝑆 “ {(𝑁𝑤)})))
6968eqrdv 2723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑅 “ {(𝑀𝑤)}) = (𝑆 “ {(𝑁𝑤)}))
70 relinxp 5810 . . . . . . . . . . . . . . . . . . 19 Rel (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))
71 relinxp 5810 . . . . . . . . . . . . . . . . . . 19 Rel (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))
72 vex 3467 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 ∈ V
7372eliniseg 6093 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀𝑤) ∈ V → (𝑧 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑧𝑅(𝑀𝑤)))
7463, 73anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀𝑤) ∈ V → ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ↔ (𝑦𝑅(𝑀𝑤) ∧ 𝑧𝑅(𝑀𝑤))))
7561, 74ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ↔ (𝑦𝑅(𝑀𝑤) ∧ 𝑧𝑅(𝑀𝑤)))
7655simprd 494 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑅(𝑀𝑤)) → (𝑧𝑅(𝑀𝑤) → (𝑦𝑅𝑧𝑦𝑆𝑧)))
7776impr 453 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ (𝑦𝑅(𝑀𝑤) ∧ 𝑧𝑅(𝑀𝑤))) → (𝑦𝑅𝑧𝑦𝑆𝑧))
7875, 77sylan2b 592 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)}))) → (𝑦𝑅𝑧𝑦𝑆𝑧))
7978pm5.32da 577 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑅𝑧) ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑆𝑧)))
80 df-br 5144 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))))
81 brinxp2 5749 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑅𝑧))
8280, 81bitr3i 276 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑅𝑧))
83 df-br 5144 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))))
84 brinxp2 5749 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑆𝑧))
8583, 84bitr3i 276 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑆𝑧))
8679, 82, 853bitr4g 313 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))))
8770, 71, 86eqrelrdv 5788 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) = (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))))
8869sqxpeqd 5704 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})) = ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))
8988ineq2d 4206 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) = (𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)}))))
9087, 89eqtrd 2765 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) = (𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)}))))
9169, 90oveq12d 7433 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑅 “ {(𝑀𝑤)})𝐹(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))) = ((𝑆 “ {(𝑁𝑤)})𝐹(𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))))
922ffvelcdmi 7087 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ dom 𝑀 → (𝑀𝑤) ∈ 𝑋)
9392adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) ∈ 𝑋)
9493adantr 479 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑀𝑤) ∈ 𝑋)
9541, 42, 47fpwwe2lem3 10654 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑀𝑤) ∈ 𝑋) → ((𝑅 “ {(𝑀𝑤)})𝐹(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))) = (𝑀𝑤))
9644, 94, 95syl2anc 582 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑅 “ {(𝑀𝑤)})𝐹(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))) = (𝑀𝑤))
976ffvelcdmi 7087 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ dom 𝑁 → (𝑁𝑤) ∈ 𝑌)
9852, 97syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ dom 𝑀) → (𝑁𝑤) ∈ 𝑌)
9998adantr 479 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑁𝑤) ∈ 𝑌)
10041, 42, 49fpwwe2lem3 10654 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑁𝑤) ∈ 𝑌) → ((𝑆 “ {(𝑁𝑤)})𝐹(𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))) = (𝑁𝑤))
10144, 99, 100syl2anc 582 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑆 “ {(𝑁𝑤)})𝐹(𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))) = (𝑁𝑤))
10291, 96, 1013eqtr3d 2773 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑀𝑤) = (𝑁𝑤))
103102ex 411 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑀𝑤) = (𝑁𝑤) → (𝑀𝑤) = (𝑁𝑤)))
10440, 103sylbird 259 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ dom 𝑀) → (∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦) → (𝑀𝑤) = (𝑁𝑤)))
10527, 104syld 47 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ dom 𝑀) → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑤) = (𝑁𝑤)))
106105ex 411 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ dom 𝑀 → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑤) = (𝑁𝑤))))
107106com23 86 . . . . . . . . . 10 (𝜑 → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
108107a2i 14 . . . . . . . . 9 ((𝜑 → ∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
10920, 108sylbi 216 . . . . . . . 8 (∀𝑦𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
110109a1i 11 . . . . . . 7 (𝑤 ∈ On → (∀𝑦𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤)))))
11119, 110tfis2 7858 . . . . . 6 (𝑤 ∈ On → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
112111com3l 89 . . . . 5 (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑤 ∈ On → (𝑀𝑤) = (𝑁𝑤))))
11313, 112mpdi 45 . . . 4 (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤)))
114113imp 405 . . 3 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) = (𝑁𝑤))
115 fvres 6910 . . . 4 (𝑤 ∈ dom 𝑀 → ((𝑁 ↾ dom 𝑀)‘𝑤) = (𝑁𝑤))
116115adantl 480 . . 3 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑁 ↾ dom 𝑀)‘𝑤) = (𝑁𝑤))
117114, 116eqtr4d 2768 . 2 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) = ((𝑁 ↾ dom 𝑀)‘𝑤))
1184, 10, 117eqfnfvd 7037 1 (𝜑𝑀 = (𝑁 ↾ dom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3051  Vcvv 3463  [wsbc 3769  cin 3939  wss 3940  {csn 4624  cop 4630   class class class wbr 5143  {copab 5205   We wwe 5626   × cxp 5670  ccnv 5671  dom cdm 5672  cres 5674  cima 5675  Ord word 6363  Oncon0 6364   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7415  OrdIsocoi 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7418  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-oi 9531
This theorem is referenced by:  fpwwe2lem8  10659
  Copyright terms: Public domain W3C validator