MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem7 Structured version   Visualization version   GIF version

Theorem fpwwe2lem7 10435
Description: Lemma for fpwwe2 10441. Show by induction that the two isometries 𝑀 and 𝑁 agree on their common domain. (Contributed by Mario Carneiro, 15-May-2015.) (Proof shortened by Peter Mazsa, 23-Sep-2022.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2lem8.x (𝜑𝑋𝑊𝑅)
fpwwe2lem8.y (𝜑𝑌𝑊𝑆)
fpwwe2lem8.m 𝑀 = OrdIso(𝑅, 𝑋)
fpwwe2lem8.n 𝑁 = OrdIso(𝑆, 𝑌)
fpwwe2lem8.s (𝜑 → dom 𝑀 ⊆ dom 𝑁)
Assertion
Ref Expression
fpwwe2lem7 (𝜑𝑀 = (𝑁 ↾ dom 𝑀))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝑀,𝑟,𝑢,𝑥,𝑦   𝑁,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑌,𝑟,𝑢,𝑥,𝑦   𝑆,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem7
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwwe2lem8.m . . . 4 𝑀 = OrdIso(𝑅, 𝑋)
21oif 9329 . . 3 𝑀:dom 𝑀𝑋
3 ffn 6626 . . 3 (𝑀:dom 𝑀𝑋𝑀 Fn dom 𝑀)
42, 3mp1i 13 . 2 (𝜑𝑀 Fn dom 𝑀)
5 fpwwe2lem8.n . . . . 5 𝑁 = OrdIso(𝑆, 𝑌)
65oif 9329 . . . 4 𝑁:dom 𝑁𝑌
7 ffn 6626 . . . 4 (𝑁:dom 𝑁𝑌𝑁 Fn dom 𝑁)
86, 7mp1i 13 . . 3 (𝜑𝑁 Fn dom 𝑁)
9 fpwwe2lem8.s . . 3 (𝜑 → dom 𝑀 ⊆ dom 𝑁)
108, 9fnssresd 6583 . 2 (𝜑 → (𝑁 ↾ dom 𝑀) Fn dom 𝑀)
111oicl 9328 . . . . . 6 Ord dom 𝑀
12 ordelon 6301 . . . . . 6 ((Ord dom 𝑀𝑤 ∈ dom 𝑀) → 𝑤 ∈ On)
1311, 12mpan 688 . . . . 5 (𝑤 ∈ dom 𝑀𝑤 ∈ On)
14 eleq1w 2819 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 ∈ dom 𝑀𝑦 ∈ dom 𝑀))
15 fveq2 6800 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑀𝑤) = (𝑀𝑦))
16 fveq2 6800 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑁𝑤) = (𝑁𝑦))
1715, 16eqeq12d 2752 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑀𝑤) = (𝑁𝑤) ↔ (𝑀𝑦) = (𝑁𝑦)))
1814, 17imbi12d 346 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤)) ↔ (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))))
1918imbi2d 342 . . . . . . 7 (𝑤 = 𝑦 → ((𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))) ↔ (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)))))
20 r19.21v 3173 . . . . . . . . 9 (∀𝑦𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) ↔ (𝜑 → ∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))))
2111a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → Ord dom 𝑀)
22 ordelss 6293 . . . . . . . . . . . . . . . . 17 ((Ord dom 𝑀𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑀)
2321, 22sylan 581 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑀)
2423sselda 3926 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ dom 𝑀) ∧ 𝑦𝑤) → 𝑦 ∈ dom 𝑀)
25 pm2.27 42 . . . . . . . . . . . . . . 15 (𝑦 ∈ dom 𝑀 → ((𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑦) = (𝑁𝑦)))
2624, 25syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ dom 𝑀) ∧ 𝑦𝑤) → ((𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑦) = (𝑁𝑦)))
2726ralimdva 3161 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ dom 𝑀) → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → ∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦)))
28 fnssres 6582 . . . . . . . . . . . . . . . . 17 ((𝑀 Fn dom 𝑀𝑤 ⊆ dom 𝑀) → (𝑀𝑤) Fn 𝑤)
294, 23, 28syl2an2r 683 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) Fn 𝑤)
309adantr 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ dom 𝑀) → dom 𝑀 ⊆ dom 𝑁)
3123, 30sstrd 3936 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑁)
32 fnssres 6582 . . . . . . . . . . . . . . . . 17 ((𝑁 Fn dom 𝑁𝑤 ⊆ dom 𝑁) → (𝑁𝑤) Fn 𝑤)
338, 31, 32syl2an2r 683 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ dom 𝑀) → (𝑁𝑤) Fn 𝑤)
34 eqfnfv 6937 . . . . . . . . . . . . . . . 16 (((𝑀𝑤) Fn 𝑤 ∧ (𝑁𝑤) Fn 𝑤) → ((𝑀𝑤) = (𝑁𝑤) ↔ ∀𝑦𝑤 ((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦)))
3529, 33, 34syl2anc 585 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑀𝑤) = (𝑁𝑤) ↔ ∀𝑦𝑤 ((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦)))
36 fvres 6819 . . . . . . . . . . . . . . . . 17 (𝑦𝑤 → ((𝑀𝑤)‘𝑦) = (𝑀𝑦))
37 fvres 6819 . . . . . . . . . . . . . . . . 17 (𝑦𝑤 → ((𝑁𝑤)‘𝑦) = (𝑁𝑦))
3836, 37eqeq12d 2752 . . . . . . . . . . . . . . . 16 (𝑦𝑤 → (((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦) ↔ (𝑀𝑦) = (𝑁𝑦)))
3938ralbiia 3091 . . . . . . . . . . . . . . 15 (∀𝑦𝑤 ((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦) ↔ ∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦))
4035, 39bitrdi 288 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑀𝑤) = (𝑁𝑤) ↔ ∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦)))
41 fpwwe2.1 . . . . . . . . . . . . . . . . . . . . . 22 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
42 fpwwe2.2 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴𝑉)
4342ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝐴𝑉)
44 simpll 765 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝜑)
45 fpwwe2.3 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
4644, 45sylan 581 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
47 fpwwe2lem8.x . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋𝑊𝑅)
4847ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑋𝑊𝑅)
49 fpwwe2lem8.y . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑌𝑊𝑆)
5049ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑌𝑊𝑆)
51 simplr 767 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑤 ∈ dom 𝑀)
529sselda 3926 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ dom 𝑀) → 𝑤 ∈ dom 𝑁)
5352adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑤 ∈ dom 𝑁)
54 simpr 486 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑀𝑤) = (𝑁𝑤))
5541, 43, 46, 48, 50, 1, 5, 51, 53, 54fpwwe2lem6 10434 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑅(𝑀𝑤)) → (𝑦𝑆(𝑁𝑤) ∧ (𝑧𝑅(𝑀𝑤) → (𝑦𝑅𝑧𝑦𝑆𝑧))))
5655simpld 496 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑅(𝑀𝑤)) → 𝑦𝑆(𝑁𝑤))
5754eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑁𝑤) = (𝑀𝑤))
5841, 43, 46, 50, 48, 5, 1, 53, 51, 57fpwwe2lem6 10434 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑆(𝑁𝑤)) → (𝑦𝑅(𝑀𝑤) ∧ (𝑧𝑆(𝑁𝑤) → (𝑦𝑆𝑧𝑦𝑅𝑧))))
5958simpld 496 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑆(𝑁𝑤)) → 𝑦𝑅(𝑀𝑤))
6056, 59impbida 799 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑦𝑅(𝑀𝑤) ↔ 𝑦𝑆(𝑁𝑤)))
61 fvex 6813 . . . . . . . . . . . . . . . . . . . 20 (𝑀𝑤) ∈ V
62 vex 3441 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
6362eliniseg 6008 . . . . . . . . . . . . . . . . . . . 20 ((𝑀𝑤) ∈ V → (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑦𝑅(𝑀𝑤)))
6461, 63ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑦𝑅(𝑀𝑤))
65 fvex 6813 . . . . . . . . . . . . . . . . . . . 20 (𝑁𝑤) ∈ V
6662eliniseg 6008 . . . . . . . . . . . . . . . . . . . 20 ((𝑁𝑤) ∈ V → (𝑦 ∈ (𝑆 “ {(𝑁𝑤)}) ↔ 𝑦𝑆(𝑁𝑤)))
6765, 66ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑆 “ {(𝑁𝑤)}) ↔ 𝑦𝑆(𝑁𝑤))
6860, 64, 673bitr4g 315 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑦 ∈ (𝑆 “ {(𝑁𝑤)})))
6968eqrdv 2734 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑅 “ {(𝑀𝑤)}) = (𝑆 “ {(𝑁𝑤)}))
70 relinxp 5732 . . . . . . . . . . . . . . . . . . 19 Rel (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))
71 relinxp 5732 . . . . . . . . . . . . . . . . . . 19 Rel (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))
72 vex 3441 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 ∈ V
7372eliniseg 6008 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀𝑤) ∈ V → (𝑧 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑧𝑅(𝑀𝑤)))
7463, 73anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀𝑤) ∈ V → ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ↔ (𝑦𝑅(𝑀𝑤) ∧ 𝑧𝑅(𝑀𝑤))))
7561, 74ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ↔ (𝑦𝑅(𝑀𝑤) ∧ 𝑧𝑅(𝑀𝑤)))
7655simprd 497 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑅(𝑀𝑤)) → (𝑧𝑅(𝑀𝑤) → (𝑦𝑅𝑧𝑦𝑆𝑧)))
7776impr 456 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ (𝑦𝑅(𝑀𝑤) ∧ 𝑧𝑅(𝑀𝑤))) → (𝑦𝑅𝑧𝑦𝑆𝑧))
7875, 77sylan2b 595 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)}))) → (𝑦𝑅𝑧𝑦𝑆𝑧))
7978pm5.32da 580 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑅𝑧) ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑆𝑧)))
80 df-br 5082 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))))
81 brinxp2 5671 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑅𝑧))
8280, 81bitr3i 278 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑅𝑧))
83 df-br 5082 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))))
84 brinxp2 5671 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑆𝑧))
8583, 84bitr3i 278 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑆𝑧))
8679, 82, 853bitr4g 315 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))))
8770, 71, 86eqrelrdv 5710 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) = (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))))
8869sqxpeqd 5628 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})) = ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))
8988ineq2d 4152 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) = (𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)}))))
9087, 89eqtrd 2776 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) = (𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)}))))
9169, 90oveq12d 7321 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑅 “ {(𝑀𝑤)})𝐹(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))) = ((𝑆 “ {(𝑁𝑤)})𝐹(𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))))
922ffvelcdmi 6988 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ dom 𝑀 → (𝑀𝑤) ∈ 𝑋)
9392adantl 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) ∈ 𝑋)
9493adantr 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑀𝑤) ∈ 𝑋)
9541, 42, 47fpwwe2lem3 10431 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑀𝑤) ∈ 𝑋) → ((𝑅 “ {(𝑀𝑤)})𝐹(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))) = (𝑀𝑤))
9644, 94, 95syl2anc 585 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑅 “ {(𝑀𝑤)})𝐹(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))) = (𝑀𝑤))
976ffvelcdmi 6988 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ dom 𝑁 → (𝑁𝑤) ∈ 𝑌)
9852, 97syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ dom 𝑀) → (𝑁𝑤) ∈ 𝑌)
9998adantr 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑁𝑤) ∈ 𝑌)
10041, 42, 49fpwwe2lem3 10431 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑁𝑤) ∈ 𝑌) → ((𝑆 “ {(𝑁𝑤)})𝐹(𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))) = (𝑁𝑤))
10144, 99, 100syl2anc 585 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑆 “ {(𝑁𝑤)})𝐹(𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))) = (𝑁𝑤))
10291, 96, 1013eqtr3d 2784 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑀𝑤) = (𝑁𝑤))
103102ex 414 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑀𝑤) = (𝑁𝑤) → (𝑀𝑤) = (𝑁𝑤)))
10440, 103sylbird 261 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ dom 𝑀) → (∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦) → (𝑀𝑤) = (𝑁𝑤)))
10527, 104syld 47 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ dom 𝑀) → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑤) = (𝑁𝑤)))
106105ex 414 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ dom 𝑀 → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑤) = (𝑁𝑤))))
107106com23 86 . . . . . . . . . 10 (𝜑 → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
108107a2i 14 . . . . . . . . 9 ((𝜑 → ∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
10920, 108sylbi 216 . . . . . . . 8 (∀𝑦𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
110109a1i 11 . . . . . . 7 (𝑤 ∈ On → (∀𝑦𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤)))))
11119, 110tfis2 7731 . . . . . 6 (𝑤 ∈ On → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
112111com3l 89 . . . . 5 (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑤 ∈ On → (𝑀𝑤) = (𝑁𝑤))))
11313, 112mpdi 45 . . . 4 (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤)))
114113imp 408 . . 3 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) = (𝑁𝑤))
115 fvres 6819 . . . 4 (𝑤 ∈ dom 𝑀 → ((𝑁 ↾ dom 𝑀)‘𝑤) = (𝑁𝑤))
116115adantl 483 . . 3 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑁 ↾ dom 𝑀)‘𝑤) = (𝑁𝑤))
117114, 116eqtr4d 2779 . 2 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) = ((𝑁 ↾ dom 𝑀)‘𝑤))
1184, 10, 117eqfnfvd 6940 1 (𝜑𝑀 = (𝑁 ↾ dom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wral 3062  Vcvv 3437  [wsbc 3721  cin 3891  wss 3892  {csn 4565  cop 4571   class class class wbr 5081  {copab 5143   We wwe 5550   × cxp 5594  ccnv 5595  dom cdm 5596  cres 5598  cima 5599  Ord word 6276  Oncon0 6277   Fn wfn 6449  wf 6450  cfv 6454  (class class class)co 7303  OrdIsocoi 9308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7616
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5496  df-eprel 5502  df-po 5510  df-so 5511  df-fr 5551  df-se 5552  df-we 5553  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608  df-ima 5609  df-pred 6213  df-ord 6280  df-on 6281  df-lim 6282  df-suc 6283  df-iota 6406  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-fv 6462  df-isom 6463  df-riota 7260  df-ov 7306  df-2nd 7860  df-frecs 8124  df-wrecs 8155  df-recs 8229  df-oi 9309
This theorem is referenced by:  fpwwe2lem8  10436
  Copyright terms: Public domain W3C validator