MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem7 Structured version   Visualization version   GIF version

Theorem fpwwe2lem7 10566
Description: Lemma for fpwwe2 10572. Show by induction that the two isometries 𝑀 and 𝑁 agree on their common domain. (Contributed by Mario Carneiro, 15-May-2015.) (Proof shortened by Peter Mazsa, 23-Sep-2022.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2lem8.x (𝜑𝑋𝑊𝑅)
fpwwe2lem8.y (𝜑𝑌𝑊𝑆)
fpwwe2lem8.m 𝑀 = OrdIso(𝑅, 𝑋)
fpwwe2lem8.n 𝑁 = OrdIso(𝑆, 𝑌)
fpwwe2lem8.s (𝜑 → dom 𝑀 ⊆ dom 𝑁)
Assertion
Ref Expression
fpwwe2lem7 (𝜑𝑀 = (𝑁 ↾ dom 𝑀))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝑀,𝑟,𝑢,𝑥,𝑦   𝑁,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑌,𝑟,𝑢,𝑥,𝑦   𝑆,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem7
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwwe2lem8.m . . . 4 𝑀 = OrdIso(𝑅, 𝑋)
21oif 9459 . . 3 𝑀:dom 𝑀𝑋
3 ffn 6670 . . 3 (𝑀:dom 𝑀𝑋𝑀 Fn dom 𝑀)
42, 3mp1i 13 . 2 (𝜑𝑀 Fn dom 𝑀)
5 fpwwe2lem8.n . . . . 5 𝑁 = OrdIso(𝑆, 𝑌)
65oif 9459 . . . 4 𝑁:dom 𝑁𝑌
7 ffn 6670 . . . 4 (𝑁:dom 𝑁𝑌𝑁 Fn dom 𝑁)
86, 7mp1i 13 . . 3 (𝜑𝑁 Fn dom 𝑁)
9 fpwwe2lem8.s . . 3 (𝜑 → dom 𝑀 ⊆ dom 𝑁)
108, 9fnssresd 6624 . 2 (𝜑 → (𝑁 ↾ dom 𝑀) Fn dom 𝑀)
111oicl 9458 . . . . . 6 Ord dom 𝑀
12 ordelon 6344 . . . . . 6 ((Ord dom 𝑀𝑤 ∈ dom 𝑀) → 𝑤 ∈ On)
1311, 12mpan 690 . . . . 5 (𝑤 ∈ dom 𝑀𝑤 ∈ On)
14 eleq1w 2811 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 ∈ dom 𝑀𝑦 ∈ dom 𝑀))
15 fveq2 6840 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑀𝑤) = (𝑀𝑦))
16 fveq2 6840 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑁𝑤) = (𝑁𝑦))
1715, 16eqeq12d 2745 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑀𝑤) = (𝑁𝑤) ↔ (𝑀𝑦) = (𝑁𝑦)))
1814, 17imbi12d 344 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤)) ↔ (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))))
1918imbi2d 340 . . . . . . 7 (𝑤 = 𝑦 → ((𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))) ↔ (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)))))
20 r19.21v 3158 . . . . . . . . 9 (∀𝑦𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) ↔ (𝜑 → ∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))))
2111a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → Ord dom 𝑀)
22 ordelss 6336 . . . . . . . . . . . . . . . . 17 ((Ord dom 𝑀𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑀)
2321, 22sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑀)
2423sselda 3943 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ dom 𝑀) ∧ 𝑦𝑤) → 𝑦 ∈ dom 𝑀)
25 pm2.27 42 . . . . . . . . . . . . . . 15 (𝑦 ∈ dom 𝑀 → ((𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑦) = (𝑁𝑦)))
2624, 25syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ dom 𝑀) ∧ 𝑦𝑤) → ((𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑦) = (𝑁𝑦)))
2726ralimdva 3145 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ dom 𝑀) → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → ∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦)))
28 fnssres 6623 . . . . . . . . . . . . . . . . 17 ((𝑀 Fn dom 𝑀𝑤 ⊆ dom 𝑀) → (𝑀𝑤) Fn 𝑤)
294, 23, 28syl2an2r 685 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) Fn 𝑤)
309adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ dom 𝑀) → dom 𝑀 ⊆ dom 𝑁)
3123, 30sstrd 3954 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑁)
32 fnssres 6623 . . . . . . . . . . . . . . . . 17 ((𝑁 Fn dom 𝑁𝑤 ⊆ dom 𝑁) → (𝑁𝑤) Fn 𝑤)
338, 31, 32syl2an2r 685 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ dom 𝑀) → (𝑁𝑤) Fn 𝑤)
34 eqfnfv 6985 . . . . . . . . . . . . . . . 16 (((𝑀𝑤) Fn 𝑤 ∧ (𝑁𝑤) Fn 𝑤) → ((𝑀𝑤) = (𝑁𝑤) ↔ ∀𝑦𝑤 ((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦)))
3529, 33, 34syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑀𝑤) = (𝑁𝑤) ↔ ∀𝑦𝑤 ((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦)))
36 fvres 6859 . . . . . . . . . . . . . . . . 17 (𝑦𝑤 → ((𝑀𝑤)‘𝑦) = (𝑀𝑦))
37 fvres 6859 . . . . . . . . . . . . . . . . 17 (𝑦𝑤 → ((𝑁𝑤)‘𝑦) = (𝑁𝑦))
3836, 37eqeq12d 2745 . . . . . . . . . . . . . . . 16 (𝑦𝑤 → (((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦) ↔ (𝑀𝑦) = (𝑁𝑦)))
3938ralbiia 3073 . . . . . . . . . . . . . . 15 (∀𝑦𝑤 ((𝑀𝑤)‘𝑦) = ((𝑁𝑤)‘𝑦) ↔ ∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦))
4035, 39bitrdi 287 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑀𝑤) = (𝑁𝑤) ↔ ∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦)))
41 fpwwe2.1 . . . . . . . . . . . . . . . . . . . . . 22 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
42 fpwwe2.2 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴𝑉)
4342ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝐴𝑉)
44 simpll 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝜑)
45 fpwwe2.3 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
4644, 45sylan 580 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
47 fpwwe2lem8.x . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋𝑊𝑅)
4847ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑋𝑊𝑅)
49 fpwwe2lem8.y . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑌𝑊𝑆)
5049ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑌𝑊𝑆)
51 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑤 ∈ dom 𝑀)
529sselda 3943 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ dom 𝑀) → 𝑤 ∈ dom 𝑁)
5352adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → 𝑤 ∈ dom 𝑁)
54 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑀𝑤) = (𝑁𝑤))
5541, 43, 46, 48, 50, 1, 5, 51, 53, 54fpwwe2lem6 10565 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑅(𝑀𝑤)) → (𝑦𝑆(𝑁𝑤) ∧ (𝑧𝑅(𝑀𝑤) → (𝑦𝑅𝑧𝑦𝑆𝑧))))
5655simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑅(𝑀𝑤)) → 𝑦𝑆(𝑁𝑤))
5754eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑁𝑤) = (𝑀𝑤))
5841, 43, 46, 50, 48, 5, 1, 53, 51, 57fpwwe2lem6 10565 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑆(𝑁𝑤)) → (𝑦𝑅(𝑀𝑤) ∧ (𝑧𝑆(𝑁𝑤) → (𝑦𝑆𝑧𝑦𝑅𝑧))))
5958simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑆(𝑁𝑤)) → 𝑦𝑅(𝑀𝑤))
6056, 59impbida 800 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑦𝑅(𝑀𝑤) ↔ 𝑦𝑆(𝑁𝑤)))
61 fvex 6853 . . . . . . . . . . . . . . . . . . . 20 (𝑀𝑤) ∈ V
62 vex 3448 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
6362eliniseg 6054 . . . . . . . . . . . . . . . . . . . 20 ((𝑀𝑤) ∈ V → (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑦𝑅(𝑀𝑤)))
6461, 63ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑦𝑅(𝑀𝑤))
65 fvex 6853 . . . . . . . . . . . . . . . . . . . 20 (𝑁𝑤) ∈ V
6662eliniseg 6054 . . . . . . . . . . . . . . . . . . . 20 ((𝑁𝑤) ∈ V → (𝑦 ∈ (𝑆 “ {(𝑁𝑤)}) ↔ 𝑦𝑆(𝑁𝑤)))
6765, 66ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑆 “ {(𝑁𝑤)}) ↔ 𝑦𝑆(𝑁𝑤))
6860, 64, 673bitr4g 314 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑦 ∈ (𝑆 “ {(𝑁𝑤)})))
6968eqrdv 2727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑅 “ {(𝑀𝑤)}) = (𝑆 “ {(𝑁𝑤)}))
70 relinxp 5768 . . . . . . . . . . . . . . . . . . 19 Rel (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))
71 relinxp 5768 . . . . . . . . . . . . . . . . . . 19 Rel (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))
72 vex 3448 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 ∈ V
7372eliniseg 6054 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑀𝑤) ∈ V → (𝑧 ∈ (𝑅 “ {(𝑀𝑤)}) ↔ 𝑧𝑅(𝑀𝑤)))
7463, 73anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀𝑤) ∈ V → ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ↔ (𝑦𝑅(𝑀𝑤) ∧ 𝑧𝑅(𝑀𝑤))))
7561, 74ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ↔ (𝑦𝑅(𝑀𝑤) ∧ 𝑧𝑅(𝑀𝑤)))
7655simprd 495 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ 𝑦𝑅(𝑀𝑤)) → (𝑧𝑅(𝑀𝑤) → (𝑦𝑅𝑧𝑦𝑆𝑧)))
7776impr 454 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ (𝑦𝑅(𝑀𝑤) ∧ 𝑧𝑅(𝑀𝑤))) → (𝑦𝑅𝑧𝑦𝑆𝑧))
7875, 77sylan2b 594 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) ∧ (𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)}))) → (𝑦𝑅𝑧𝑦𝑆𝑧))
7978pm5.32da 579 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑅𝑧) ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑆𝑧)))
80 df-br 5103 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))))
81 brinxp2 5709 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑅𝑧))
8280, 81bitr3i 277 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑅𝑧))
83 df-br 5103 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))))
84 brinxp2 5709 . . . . . . . . . . . . . . . . . . . . 21 (𝑦(𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))𝑧 ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑆𝑧))
8583, 84bitr3i 277 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) ↔ ((𝑦 ∈ (𝑅 “ {(𝑀𝑤)}) ∧ 𝑧 ∈ (𝑅 “ {(𝑀𝑤)})) ∧ 𝑦𝑆𝑧))
8679, 82, 853bitr4g 314 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))))
8770, 71, 86eqrelrdv 5746 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) = (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))))
8869sqxpeqd 5663 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})) = ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))
8988ineq2d 4179 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑆 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) = (𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)}))))
9087, 89eqtrd 2764 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)}))) = (𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)}))))
9169, 90oveq12d 7387 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑅 “ {(𝑀𝑤)})𝐹(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))) = ((𝑆 “ {(𝑁𝑤)})𝐹(𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))))
922ffvelcdmi 7037 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ dom 𝑀 → (𝑀𝑤) ∈ 𝑋)
9392adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) ∈ 𝑋)
9493adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑀𝑤) ∈ 𝑋)
9541, 42, 47fpwwe2lem3 10562 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑀𝑤) ∈ 𝑋) → ((𝑅 “ {(𝑀𝑤)})𝐹(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))) = (𝑀𝑤))
9644, 94, 95syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑅 “ {(𝑀𝑤)})𝐹(𝑅 ∩ ((𝑅 “ {(𝑀𝑤)}) × (𝑅 “ {(𝑀𝑤)})))) = (𝑀𝑤))
976ffvelcdmi 7037 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ dom 𝑁 → (𝑁𝑤) ∈ 𝑌)
9852, 97syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ dom 𝑀) → (𝑁𝑤) ∈ 𝑌)
9998adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑁𝑤) ∈ 𝑌)
10041, 42, 49fpwwe2lem3 10562 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑁𝑤) ∈ 𝑌) → ((𝑆 “ {(𝑁𝑤)})𝐹(𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))) = (𝑁𝑤))
10144, 99, 100syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → ((𝑆 “ {(𝑁𝑤)})𝐹(𝑆 ∩ ((𝑆 “ {(𝑁𝑤)}) × (𝑆 “ {(𝑁𝑤)})))) = (𝑁𝑤))
10291, 96, 1013eqtr3d 2772 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ dom 𝑀) ∧ (𝑀𝑤) = (𝑁𝑤)) → (𝑀𝑤) = (𝑁𝑤))
103102ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑀𝑤) = (𝑁𝑤) → (𝑀𝑤) = (𝑁𝑤)))
10440, 103sylbird 260 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ dom 𝑀) → (∀𝑦𝑤 (𝑀𝑦) = (𝑁𝑦) → (𝑀𝑤) = (𝑁𝑤)))
10527, 104syld 47 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ dom 𝑀) → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑤) = (𝑁𝑤)))
106105ex 412 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ dom 𝑀 → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑀𝑤) = (𝑁𝑤))))
107106com23 86 . . . . . . . . . 10 (𝜑 → (∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦)) → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
108107a2i 14 . . . . . . . . 9 ((𝜑 → ∀𝑦𝑤 (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
10920, 108sylbi 217 . . . . . . . 8 (∀𝑦𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
110109a1i 11 . . . . . . 7 (𝑤 ∈ On → (∀𝑦𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀𝑦) = (𝑁𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤)))))
11119, 110tfis2 7813 . . . . . 6 (𝑤 ∈ On → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤))))
112111com3l 89 . . . . 5 (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑤 ∈ On → (𝑀𝑤) = (𝑁𝑤))))
11313, 112mpdi 45 . . . 4 (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀𝑤) = (𝑁𝑤)))
114113imp 406 . . 3 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) = (𝑁𝑤))
115 fvres 6859 . . . 4 (𝑤 ∈ dom 𝑀 → ((𝑁 ↾ dom 𝑀)‘𝑤) = (𝑁𝑤))
116115adantl 481 . . 3 ((𝜑𝑤 ∈ dom 𝑀) → ((𝑁 ↾ dom 𝑀)‘𝑤) = (𝑁𝑤))
117114, 116eqtr4d 2767 . 2 ((𝜑𝑤 ∈ dom 𝑀) → (𝑀𝑤) = ((𝑁 ↾ dom 𝑀)‘𝑤))
1184, 10, 117eqfnfvd 6988 1 (𝜑𝑀 = (𝑁 ↾ dom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  [wsbc 3750  cin 3910  wss 3911  {csn 4585  cop 4591   class class class wbr 5102  {copab 5164   We wwe 5583   × cxp 5629  ccnv 5630  dom cdm 5631  cres 5633  cima 5634  Ord word 6319  Oncon0 6320   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  OrdIsocoi 9438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-oi 9439
This theorem is referenced by:  fpwwe2lem8  10567
  Copyright terms: Public domain W3C validator