Step | Hyp | Ref
| Expression |
1 | | fpwwe2lem8.m |
. . . 4
⊢ 𝑀 = OrdIso(𝑅, 𝑋) |
2 | 1 | oif 9329 |
. . 3
⊢ 𝑀:dom 𝑀⟶𝑋 |
3 | | ffn 6626 |
. . 3
⊢ (𝑀:dom 𝑀⟶𝑋 → 𝑀 Fn dom 𝑀) |
4 | 2, 3 | mp1i 13 |
. 2
⊢ (𝜑 → 𝑀 Fn dom 𝑀) |
5 | | fpwwe2lem8.n |
. . . . 5
⊢ 𝑁 = OrdIso(𝑆, 𝑌) |
6 | 5 | oif 9329 |
. . . 4
⊢ 𝑁:dom 𝑁⟶𝑌 |
7 | | ffn 6626 |
. . . 4
⊢ (𝑁:dom 𝑁⟶𝑌 → 𝑁 Fn dom 𝑁) |
8 | 6, 7 | mp1i 13 |
. . 3
⊢ (𝜑 → 𝑁 Fn dom 𝑁) |
9 | | fpwwe2lem8.s |
. . 3
⊢ (𝜑 → dom 𝑀 ⊆ dom 𝑁) |
10 | 8, 9 | fnssresd 6583 |
. 2
⊢ (𝜑 → (𝑁 ↾ dom 𝑀) Fn dom 𝑀) |
11 | 1 | oicl 9328 |
. . . . . 6
⊢ Ord dom
𝑀 |
12 | | ordelon 6301 |
. . . . . 6
⊢ ((Ord dom
𝑀 ∧ 𝑤 ∈ dom 𝑀) → 𝑤 ∈ On) |
13 | 11, 12 | mpan 688 |
. . . . 5
⊢ (𝑤 ∈ dom 𝑀 → 𝑤 ∈ On) |
14 | | eleq1w 2819 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑤 ∈ dom 𝑀 ↔ 𝑦 ∈ dom 𝑀)) |
15 | | fveq2 6800 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑀‘𝑤) = (𝑀‘𝑦)) |
16 | | fveq2 6800 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑁‘𝑤) = (𝑁‘𝑦)) |
17 | 15, 16 | eqeq12d 2752 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ((𝑀‘𝑤) = (𝑁‘𝑤) ↔ (𝑀‘𝑦) = (𝑁‘𝑦))) |
18 | 14, 17 | imbi12d 346 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → ((𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤)) ↔ (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)))) |
19 | 18 | imbi2d 342 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → ((𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤))) ↔ (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦))))) |
20 | | r19.21v 3173 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦))) ↔ (𝜑 → ∀𝑦 ∈ 𝑤 (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)))) |
21 | 11 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Ord dom 𝑀) |
22 | | ordelss 6293 |
. . . . . . . . . . . . . . . . 17
⊢ ((Ord dom
𝑀 ∧ 𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑀) |
23 | 21, 22 | sylan 581 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑀) |
24 | 23 | sselda 3926 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ 𝑦 ∈ 𝑤) → 𝑦 ∈ dom 𝑀) |
25 | | pm2.27 42 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ dom 𝑀 → ((𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)) → (𝑀‘𝑦) = (𝑁‘𝑦))) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ 𝑦 ∈ 𝑤) → ((𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)) → (𝑀‘𝑦) = (𝑁‘𝑦))) |
27 | 26 | ralimdva 3161 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (∀𝑦 ∈ 𝑤 (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)) → ∀𝑦 ∈ 𝑤 (𝑀‘𝑦) = (𝑁‘𝑦))) |
28 | | fnssres 6582 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 Fn dom 𝑀 ∧ 𝑤 ⊆ dom 𝑀) → (𝑀 ↾ 𝑤) Fn 𝑤) |
29 | 4, 23, 28 | syl2an2r 683 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (𝑀 ↾ 𝑤) Fn 𝑤) |
30 | 9 | adantr 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → dom 𝑀 ⊆ dom 𝑁) |
31 | 23, 30 | sstrd 3936 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑁) |
32 | | fnssres 6582 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 Fn dom 𝑁 ∧ 𝑤 ⊆ dom 𝑁) → (𝑁 ↾ 𝑤) Fn 𝑤) |
33 | 8, 31, 32 | syl2an2r 683 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (𝑁 ↾ 𝑤) Fn 𝑤) |
34 | | eqfnfv 6937 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ↾ 𝑤) Fn 𝑤 ∧ (𝑁 ↾ 𝑤) Fn 𝑤) → ((𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤) ↔ ∀𝑦 ∈ 𝑤 ((𝑀 ↾ 𝑤)‘𝑦) = ((𝑁 ↾ 𝑤)‘𝑦))) |
35 | 29, 33, 34 | syl2anc 585 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → ((𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤) ↔ ∀𝑦 ∈ 𝑤 ((𝑀 ↾ 𝑤)‘𝑦) = ((𝑁 ↾ 𝑤)‘𝑦))) |
36 | | fvres 6819 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝑤 → ((𝑀 ↾ 𝑤)‘𝑦) = (𝑀‘𝑦)) |
37 | | fvres 6819 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝑤 → ((𝑁 ↾ 𝑤)‘𝑦) = (𝑁‘𝑦)) |
38 | 36, 37 | eqeq12d 2752 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑤 → (((𝑀 ↾ 𝑤)‘𝑦) = ((𝑁 ↾ 𝑤)‘𝑦) ↔ (𝑀‘𝑦) = (𝑁‘𝑦))) |
39 | 38 | ralbiia 3091 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦 ∈
𝑤 ((𝑀 ↾ 𝑤)‘𝑦) = ((𝑁 ↾ 𝑤)‘𝑦) ↔ ∀𝑦 ∈ 𝑤 (𝑀‘𝑦) = (𝑁‘𝑦)) |
40 | 35, 39 | bitrdi 288 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → ((𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤) ↔ ∀𝑦 ∈ 𝑤 (𝑀‘𝑦) = (𝑁‘𝑦))) |
41 | | fpwwe2.1 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
42 | | fpwwe2.2 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
43 | 42 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → 𝐴 ∈ 𝑉) |
44 | | simpll 765 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → 𝜑) |
45 | | fpwwe2.3 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
46 | 44, 45 | sylan 581 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
47 | | fpwwe2lem8.x |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑋𝑊𝑅) |
48 | 47 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → 𝑋𝑊𝑅) |
49 | | fpwwe2lem8.y |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑌𝑊𝑆) |
50 | 49 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → 𝑌𝑊𝑆) |
51 | | simplr 767 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → 𝑤 ∈ dom 𝑀) |
52 | 9 | sselda 3926 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → 𝑤 ∈ dom 𝑁) |
53 | 52 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → 𝑤 ∈ dom 𝑁) |
54 | | simpr 486 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) |
55 | 41, 43, 46, 48, 50, 1, 5, 51, 53, 54 | fpwwe2lem6 10434 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ 𝑦𝑅(𝑀‘𝑤)) → (𝑦𝑆(𝑁‘𝑤) ∧ (𝑧𝑅(𝑀‘𝑤) → (𝑦𝑅𝑧 ↔ 𝑦𝑆𝑧)))) |
56 | 55 | simpld 496 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ 𝑦𝑅(𝑀‘𝑤)) → 𝑦𝑆(𝑁‘𝑤)) |
57 | 54 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑁 ↾ 𝑤) = (𝑀 ↾ 𝑤)) |
58 | 41, 43, 46, 50, 48, 5, 1, 53, 51, 57 | fpwwe2lem6 10434 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ 𝑦𝑆(𝑁‘𝑤)) → (𝑦𝑅(𝑀‘𝑤) ∧ (𝑧𝑆(𝑁‘𝑤) → (𝑦𝑆𝑧 ↔ 𝑦𝑅𝑧)))) |
59 | 58 | simpld 496 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ 𝑦𝑆(𝑁‘𝑤)) → 𝑦𝑅(𝑀‘𝑤)) |
60 | 56, 59 | impbida 799 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑦𝑅(𝑀‘𝑤) ↔ 𝑦𝑆(𝑁‘𝑤))) |
61 | | fvex 6813 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀‘𝑤) ∈ V |
62 | | vex 3441 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑦 ∈ V |
63 | 62 | eliniseg 6008 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀‘𝑤) ∈ V → (𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ↔ 𝑦𝑅(𝑀‘𝑤))) |
64 | 61, 63 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ↔ 𝑦𝑅(𝑀‘𝑤)) |
65 | | fvex 6813 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁‘𝑤) ∈ V |
66 | 62 | eliniseg 6008 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁‘𝑤) ∈ V → (𝑦 ∈ (◡𝑆 “ {(𝑁‘𝑤)}) ↔ 𝑦𝑆(𝑁‘𝑤))) |
67 | 65, 66 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (◡𝑆 “ {(𝑁‘𝑤)}) ↔ 𝑦𝑆(𝑁‘𝑤)) |
68 | 60, 64, 67 | 3bitr4g 315 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ↔ 𝑦 ∈ (◡𝑆 “ {(𝑁‘𝑤)}))) |
69 | 68 | eqrdv 2734 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (◡𝑅 “ {(𝑀‘𝑤)}) = (◡𝑆 “ {(𝑁‘𝑤)})) |
70 | | relinxp 5732 |
. . . . . . . . . . . . . . . . . . 19
⊢ Rel
(𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) |
71 | | relinxp 5732 |
. . . . . . . . . . . . . . . . . . 19
⊢ Rel
(𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) |
72 | | vex 3441 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑧 ∈ V |
73 | 72 | eliniseg 6008 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑀‘𝑤) ∈ V → (𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ↔ 𝑧𝑅(𝑀‘𝑤))) |
74 | 63, 73 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑀‘𝑤) ∈ V → ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ↔ (𝑦𝑅(𝑀‘𝑤) ∧ 𝑧𝑅(𝑀‘𝑤)))) |
75 | 61, 74 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ↔ (𝑦𝑅(𝑀‘𝑤) ∧ 𝑧𝑅(𝑀‘𝑤))) |
76 | 55 | simprd 497 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ 𝑦𝑅(𝑀‘𝑤)) → (𝑧𝑅(𝑀‘𝑤) → (𝑦𝑅𝑧 ↔ 𝑦𝑆𝑧))) |
77 | 76 | impr 456 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ (𝑦𝑅(𝑀‘𝑤) ∧ 𝑧𝑅(𝑀‘𝑤))) → (𝑦𝑅𝑧 ↔ 𝑦𝑆𝑧)) |
78 | 75, 77 | sylan2b 595 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ (𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)}))) → (𝑦𝑅𝑧 ↔ 𝑦𝑆𝑧)) |
79 | 78 | pm5.32da 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ∧ 𝑦𝑅𝑧) ↔ ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ∧ 𝑦𝑆𝑧))) |
80 | | df-br 5082 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦(𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))) |
81 | | brinxp2 5671 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦(𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))𝑧 ↔ ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ∧ 𝑦𝑅𝑧)) |
82 | 80, 81 | bitr3i 278 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) ↔ ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ∧ 𝑦𝑅𝑧)) |
83 | | df-br 5082 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦(𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))) |
84 | | brinxp2 5671 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦(𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))𝑧 ↔ ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ∧ 𝑦𝑆𝑧)) |
85 | 83, 84 | bitr3i 278 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) ↔ ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ∧ 𝑦𝑆𝑧)) |
86 | 79, 82, 85 | 3bitr4g 315 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (⟨𝑦, 𝑧⟩ ∈ (𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) ↔ ⟨𝑦, 𝑧⟩ ∈ (𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))))) |
87 | 70, 71, 86 | eqrelrdv 5710 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) = (𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))) |
88 | 69 | sqxpeqd 5628 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})) = ((◡𝑆 “ {(𝑁‘𝑤)}) × (◡𝑆 “ {(𝑁‘𝑤)}))) |
89 | 88 | ineq2d 4152 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) = (𝑆 ∩ ((◡𝑆 “ {(𝑁‘𝑤)}) × (◡𝑆 “ {(𝑁‘𝑤)})))) |
90 | 87, 89 | eqtrd 2776 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) = (𝑆 ∩ ((◡𝑆 “ {(𝑁‘𝑤)}) × (◡𝑆 “ {(𝑁‘𝑤)})))) |
91 | 69, 90 | oveq12d 7321 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → ((◡𝑅 “ {(𝑀‘𝑤)})𝐹(𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))) = ((◡𝑆 “ {(𝑁‘𝑤)})𝐹(𝑆 ∩ ((◡𝑆 “ {(𝑁‘𝑤)}) × (◡𝑆 “ {(𝑁‘𝑤)}))))) |
92 | 2 | ffvelcdmi 6988 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) ∈ 𝑋) |
93 | 92 | adantl 483 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (𝑀‘𝑤) ∈ 𝑋) |
94 | 93 | adantr 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑀‘𝑤) ∈ 𝑋) |
95 | 41, 42, 47 | fpwwe2lem3 10431 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑀‘𝑤) ∈ 𝑋) → ((◡𝑅 “ {(𝑀‘𝑤)})𝐹(𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))) = (𝑀‘𝑤)) |
96 | 44, 94, 95 | syl2anc 585 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → ((◡𝑅 “ {(𝑀‘𝑤)})𝐹(𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))) = (𝑀‘𝑤)) |
97 | 6 | ffvelcdmi 6988 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ dom 𝑁 → (𝑁‘𝑤) ∈ 𝑌) |
98 | 52, 97 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (𝑁‘𝑤) ∈ 𝑌) |
99 | 98 | adantr 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑁‘𝑤) ∈ 𝑌) |
100 | 41, 42, 49 | fpwwe2lem3 10431 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑁‘𝑤) ∈ 𝑌) → ((◡𝑆 “ {(𝑁‘𝑤)})𝐹(𝑆 ∩ ((◡𝑆 “ {(𝑁‘𝑤)}) × (◡𝑆 “ {(𝑁‘𝑤)})))) = (𝑁‘𝑤)) |
101 | 44, 99, 100 | syl2anc 585 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → ((◡𝑆 “ {(𝑁‘𝑤)})𝐹(𝑆 ∩ ((◡𝑆 “ {(𝑁‘𝑤)}) × (◡𝑆 “ {(𝑁‘𝑤)})))) = (𝑁‘𝑤)) |
102 | 91, 96, 101 | 3eqtr3d 2784 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑀‘𝑤) = (𝑁‘𝑤)) |
103 | 102 | ex 414 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → ((𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤) → (𝑀‘𝑤) = (𝑁‘𝑤))) |
104 | 40, 103 | sylbird 261 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (∀𝑦 ∈ 𝑤 (𝑀‘𝑦) = (𝑁‘𝑦) → (𝑀‘𝑤) = (𝑁‘𝑤))) |
105 | 27, 104 | syld 47 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (∀𝑦 ∈ 𝑤 (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)) → (𝑀‘𝑤) = (𝑁‘𝑤))) |
106 | 105 | ex 414 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑤 ∈ dom 𝑀 → (∀𝑦 ∈ 𝑤 (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)) → (𝑀‘𝑤) = (𝑁‘𝑤)))) |
107 | 106 | com23 86 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑦 ∈ 𝑤 (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)) → (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤)))) |
108 | 107 | a2i 14 |
. . . . . . . . 9
⊢ ((𝜑 → ∀𝑦 ∈ 𝑤 (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤)))) |
109 | 20, 108 | sylbi 216 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤)))) |
110 | 109 | a1i 11 |
. . . . . . 7
⊢ (𝑤 ∈ On → (∀𝑦 ∈ 𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤))))) |
111 | 19, 110 | tfis2 7731 |
. . . . . 6
⊢ (𝑤 ∈ On → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤)))) |
112 | 111 | com3l 89 |
. . . . 5
⊢ (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑤 ∈ On → (𝑀‘𝑤) = (𝑁‘𝑤)))) |
113 | 13, 112 | mpdi 45 |
. . . 4
⊢ (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤))) |
114 | 113 | imp 408 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (𝑀‘𝑤) = (𝑁‘𝑤)) |
115 | | fvres 6819 |
. . . 4
⊢ (𝑤 ∈ dom 𝑀 → ((𝑁 ↾ dom 𝑀)‘𝑤) = (𝑁‘𝑤)) |
116 | 115 | adantl 483 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → ((𝑁 ↾ dom 𝑀)‘𝑤) = (𝑁‘𝑤)) |
117 | 114, 116 | eqtr4d 2779 |
. 2
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (𝑀‘𝑤) = ((𝑁 ↾ dom 𝑀)‘𝑤)) |
118 | 4, 10, 117 | eqfnfvd 6940 |
1
⊢ (𝜑 → 𝑀 = (𝑁 ↾ dom 𝑀)) |