MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndvdsadd Structured version   Visualization version   GIF version

Theorem ndvdsadd 16313
Description: Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 + 1, 𝑁 + 2... 𝑁 + (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdsadd ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾)))

Proof of Theorem ndvdsadd
StepHypRef Expression
1 nnre 12124 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
2 nnre 12124 . . . . . . . . 9 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
3 posdif 11602 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐾 < 𝐷 ↔ 0 < (𝐷𝐾)))
41, 2, 3syl2anr 597 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐾 < 𝐷 ↔ 0 < (𝐷𝐾)))
54pm5.32i 574 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐾 < 𝐷) ↔ ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 0 < (𝐷𝐾)))
6 nnz 12481 . . . . . . . . 9 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
7 nnz 12481 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
8 zsubcl 12506 . . . . . . . . 9 ((𝐷 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷𝐾) ∈ ℤ)
96, 7, 8syl2an 596 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷𝐾) ∈ ℤ)
10 elnnz 12470 . . . . . . . . 9 ((𝐷𝐾) ∈ ℕ ↔ ((𝐷𝐾) ∈ ℤ ∧ 0 < (𝐷𝐾)))
1110biimpri 228 . . . . . . . 8 (((𝐷𝐾) ∈ ℤ ∧ 0 < (𝐷𝐾)) → (𝐷𝐾) ∈ ℕ)
129, 11sylan 580 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 0 < (𝐷𝐾)) → (𝐷𝐾) ∈ ℕ)
135, 12sylbi 217 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐾 < 𝐷) → (𝐷𝐾) ∈ ℕ)
1413anasss 466 . . . . 5 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝐾) ∈ ℕ)
15 nngt0 12148 . . . . . . . 8 (𝐾 ∈ ℕ → 0 < 𝐾)
16 ltsubpos 11601 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (0 < 𝐾 ↔ (𝐷𝐾) < 𝐷))
171, 2, 16syl2an 596 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 < 𝐾 ↔ (𝐷𝐾) < 𝐷))
1817biimpd 229 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 < 𝐾 → (𝐷𝐾) < 𝐷))
1918expcom 413 . . . . . . . 8 (𝐷 ∈ ℕ → (𝐾 ∈ ℕ → (0 < 𝐾 → (𝐷𝐾) < 𝐷)))
2015, 19mpdi 45 . . . . . . 7 (𝐷 ∈ ℕ → (𝐾 ∈ ℕ → (𝐷𝐾) < 𝐷))
2120imp 406 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷𝐾) < 𝐷)
2221adantrr 717 . . . . 5 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝐾) < 𝐷)
2314, 22jca 511 . . . 4 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷))
24233adant1 1130 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷))
25 ndvdssub 16312 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
2624, 25syld3an3 1411 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
27 zaddcl 12504 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
287, 27sylan2 593 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝑁 + 𝐾) ∈ ℤ)
29 dvdssubr 16208 . . . . . . . 8 ((𝐷 ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
306, 28, 29syl2an 596 . . . . . . 7 ((𝐷 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ)) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
3130an12s 649 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
32313impb 1114 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
33 zcn 12465 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
34 nncn 12125 . . . . . . 7 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
35 nncn 12125 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
36 subsub3 11385 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 − (𝐷𝐾)) = ((𝑁 + 𝐾) − 𝐷))
3733, 34, 35, 36syl3an 1160 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁 − (𝐷𝐾)) = ((𝑁 + 𝐾) − 𝐷))
3837breq2d 5101 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 − (𝐷𝐾)) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
3932, 38bitr4d 282 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
4039notbid 318 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (¬ 𝐷 ∥ (𝑁 + 𝐾) ↔ ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
41403adant3r 1182 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (¬ 𝐷 ∥ (𝑁 + 𝐾) ↔ ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
4226, 41sylibrd 259 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110   class class class wbr 5089  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998   + caddc 11001   < clt 11138  cmin 11336  cn 12117  cz 12460  cdvds 16155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-fz 13400  df-seq 13901  df-exp 13961  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-dvds 16156
This theorem is referenced by:  ndvdsp1  16314  ndvdsi  16315
  Copyright terms: Public domain W3C validator