MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdneg Structured version   Visualization version   GIF version

Theorem gcdneg 16402
Description: Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcdneg ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))

Proof of Theorem gcdneg
StepHypRef Expression
1 oveq12 7366 . . . . 5 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0))
21adantl 482 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (0 gcd 0))
3 zcn 12504 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
43negeq0d 11504 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 = 0 ↔ -𝑁 = 0))
54anbi2d 629 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑀 = 0 ∧ 𝑁 = 0) ↔ (𝑀 = 0 ∧ -𝑁 = 0)))
65adantl 482 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) ↔ (𝑀 = 0 ∧ -𝑁 = 0)))
7 oveq12 7366 . . . . . 6 ((𝑀 = 0 ∧ -𝑁 = 0) → (𝑀 gcd -𝑁) = (0 gcd 0))
86, 7syl6bi 252 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd -𝑁) = (0 gcd 0)))
98imp 407 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd -𝑁) = (0 gcd 0))
102, 9eqtr4d 2779 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd -𝑁))
11 gcddvds 16383 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
12 gcdcl 16386 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
1312nn0zd 12525 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℤ)
14 dvdsnegb 16156 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ -𝑁))
1513, 14sylancom 588 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ -𝑁))
1615anbi2d 629 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ↔ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁)))
1711, 16mpbid 231 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁))
186notbid 317 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ ¬ (𝑀 = 0 ∧ -𝑁 = 0)))
19 simpl 483 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
20 znegcl 12538 . . . . . . . . . 10 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
2120adantl 482 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -𝑁 ∈ ℤ)
22 dvdslegcd 16384 . . . . . . . . . 10 ((((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ -𝑁 = 0)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁)))
2322ex 413 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ -𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2413, 19, 21, 23syl3anc 1371 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ -𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2518, 24sylbid 239 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2625com12 32 . . . . . 6 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2717, 26mpdi 45 . . . . 5 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁)))
2827impcom 408 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))
29 gcddvds 16383 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ -𝑁))
3020, 29sylan2 593 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ -𝑁))
31 gcdcl 16386 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℕ0)
3231nn0zd 12525 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℤ)
3320, 32sylan2 593 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℤ)
34 dvdsnegb 16156 . . . . . . . . 9 (((𝑀 gcd -𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑁 ↔ (𝑀 gcd -𝑁) ∥ -𝑁))
3533, 34sylancom 588 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑁 ↔ (𝑀 gcd -𝑁) ∥ -𝑁))
3635anbi2d 629 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) ↔ ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ -𝑁)))
3730, 36mpbird 256 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁))
38 simpr 485 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
39 dvdslegcd 16384 . . . . . . . . 9 ((((𝑀 gcd -𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁)))
4039ex 413 . . . . . . . 8 (((𝑀 gcd -𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4133, 19, 38, 40syl3anc 1371 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4241com12 32 . . . . . 6 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4337, 42mpdi 45 . . . . 5 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁)))
4443impcom 408 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))
4513zred 12607 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℝ)
4633zred 12607 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℝ)
4745, 46letri3d 11297 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) = (𝑀 gcd -𝑁) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁) ∧ (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4847adantr 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) = (𝑀 gcd -𝑁) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁) ∧ (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4928, 44, 48mpbir2and 711 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd -𝑁))
5010, 49pm2.61dan 811 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd -𝑁))
5150eqcomd 2742 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  (class class class)co 7357  0cc0 11051  cle 11190  -cneg 11386  cz 12499  cdvds 16136   gcd cgcd 16374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375
This theorem is referenced by:  neggcd  16403  gcdabsOLD  16412  odinv  19343  divnumden2  31714  gcdnegnni  40447
  Copyright terms: Public domain W3C validator