MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdneg Structured version   Visualization version   GIF version

Theorem gcdneg 16499
Description: Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcdneg ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))

Proof of Theorem gcdneg
StepHypRef Expression
1 oveq12 7399 . . . . 5 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0))
21adantl 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (0 gcd 0))
3 zcn 12541 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
43negeq0d 11532 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 = 0 ↔ -𝑁 = 0))
54anbi2d 630 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑀 = 0 ∧ 𝑁 = 0) ↔ (𝑀 = 0 ∧ -𝑁 = 0)))
65adantl 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) ↔ (𝑀 = 0 ∧ -𝑁 = 0)))
7 oveq12 7399 . . . . . 6 ((𝑀 = 0 ∧ -𝑁 = 0) → (𝑀 gcd -𝑁) = (0 gcd 0))
86, 7biimtrdi 253 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd -𝑁) = (0 gcd 0)))
98imp 406 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd -𝑁) = (0 gcd 0))
102, 9eqtr4d 2768 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd -𝑁))
11 gcddvds 16480 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
12 gcdcl 16483 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
1312nn0zd 12562 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℤ)
14 dvdsnegb 16250 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ -𝑁))
1513, 14sylancom 588 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ -𝑁))
1615anbi2d 630 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ↔ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁)))
1711, 16mpbid 232 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁))
186notbid 318 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ ¬ (𝑀 = 0 ∧ -𝑁 = 0)))
19 simpl 482 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
20 znegcl 12575 . . . . . . . . . 10 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
2120adantl 481 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -𝑁 ∈ ℤ)
22 dvdslegcd 16481 . . . . . . . . . 10 ((((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ -𝑁 = 0)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁)))
2322ex 412 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ -𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2413, 19, 21, 23syl3anc 1373 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ -𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2518, 24sylbid 240 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2625com12 32 . . . . . 6 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2717, 26mpdi 45 . . . . 5 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁)))
2827impcom 407 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))
29 gcddvds 16480 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ -𝑁))
3020, 29sylan2 593 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ -𝑁))
31 gcdcl 16483 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℕ0)
3231nn0zd 12562 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℤ)
3320, 32sylan2 593 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℤ)
34 dvdsnegb 16250 . . . . . . . . 9 (((𝑀 gcd -𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑁 ↔ (𝑀 gcd -𝑁) ∥ -𝑁))
3533, 34sylancom 588 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑁 ↔ (𝑀 gcd -𝑁) ∥ -𝑁))
3635anbi2d 630 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) ↔ ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ -𝑁)))
3730, 36mpbird 257 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁))
38 simpr 484 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
39 dvdslegcd 16481 . . . . . . . . 9 ((((𝑀 gcd -𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁)))
4039ex 412 . . . . . . . 8 (((𝑀 gcd -𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4133, 19, 38, 40syl3anc 1373 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4241com12 32 . . . . . 6 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4337, 42mpdi 45 . . . . 5 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁)))
4443impcom 407 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))
4513zred 12645 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℝ)
4633zred 12645 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℝ)
4745, 46letri3d 11323 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) = (𝑀 gcd -𝑁) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁) ∧ (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4847adantr 480 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) = (𝑀 gcd -𝑁) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁) ∧ (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4928, 44, 48mpbir2and 713 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd -𝑁))
5010, 49pm2.61dan 812 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd -𝑁))
5150eqcomd 2736 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390  0cc0 11075  cle 11216  -cneg 11413  cz 12536  cdvds 16229   gcd cgcd 16471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472
This theorem is referenced by:  neggcd  16500  odinv  19498  divnumden2  32747  gcdnegnni  41984
  Copyright terms: Public domain W3C validator