MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem12OLD Structured version   Visualization version   GIF version

Theorem wfrlem12OLD 8266
Description: Lemma for well-ordered recursion. Here, we compute the value of the recursive definition generator. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfrfunOLD.1 𝑅 We 𝐴
wfrfunOLD.2 𝑅 Se 𝐴
wfrfunOLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrlem12OLD (𝑦 ∈ dom 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑅
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem wfrlem12OLD
Dummy variables 𝑓 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3449 . . 3 𝑦 ∈ V
21eldm2 5857 . 2 (𝑦 ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝐹)
3 wfrfunOLD.3 . . . . . . 7 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
4 dfwrecsOLD 8244 . . . . . . 7 wrecs(𝑅, 𝐴, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
53, 4eqtri 2764 . . . . . 6 𝐹 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
65eleq2i 2829 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
7 eluniab 4880 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))))
86, 7bitri 274 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))))
9 abid 2717 . . . . . . . 8 (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
10 elssuni 4898 . . . . . . . . 9 (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝑓 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
1110, 5sseqtrrdi 3995 . . . . . . . 8 (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝑓𝐹)
129, 11sylbir 234 . . . . . . 7 (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → 𝑓𝐹)
13 fnop 6611 . . . . . . . . . . 11 ((𝑓 Fn 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → 𝑦𝑥)
1413ex 413 . . . . . . . . . 10 (𝑓 Fn 𝑥 → (⟨𝑦, 𝑧⟩ ∈ 𝑓𝑦𝑥))
15 rsp 3230 . . . . . . . . . . . . . . 15 (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑦𝑥 → (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
1615impcom 408 . . . . . . . . . . . . . 14 ((𝑦𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))
17 rsp 3230 . . . . . . . . . . . . . . . . 17 (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦𝑥 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥))
18 fndm 6605 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 Fn 𝑥 → dom 𝑓 = 𝑥)
1918sseq2d 3976 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 Fn 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥))
2018eleq2d 2823 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 Fn 𝑥 → (𝑦 ∈ dom 𝑓𝑦𝑥))
2119, 20anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 Fn 𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥𝑦𝑥)))
2221biimprd 247 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 Fn 𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥𝑦𝑥) → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)))
2322expd 416 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 Fn 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓))))
2423impcom 408 . . . . . . . . . . . . . . . . . . . 20 ((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥𝑓 Fn 𝑥) → (𝑦𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)))
25 wfrfunOLD.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅 We 𝐴
26 wfrfunOLD.2 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅 Se 𝐴
2725, 26, 3wfrfunOLD 8265 . . . . . . . . . . . . . . . . . . . . . . 23 Fun 𝐹
28 funssfv 6863 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐹𝑓𝐹𝑦 ∈ dom 𝑓) → (𝐹𝑦) = (𝑓𝑦))
29283adant3l 1180 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → (𝐹𝑦) = (𝑓𝑦))
30 fun2ssres 6546 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝐹𝑓𝐹 ∧ Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))
31303adant3r 1181 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))
3231fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))
3329, 32eqeq12d 2752 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → ((𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
3433biimprd 247 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
3527, 34mp3an1 1448 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
3635expcom 414 . . . . . . . . . . . . . . . . . . . . 21 ((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓) → (𝑓𝐹 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
3736com23 86 . . . . . . . . . . . . . . . . . . . 20 ((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓) → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
3824, 37syl6com 37 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥𝑓 Fn 𝑥) → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))
3938expd 416 . . . . . . . . . . . . . . . . . 18 (𝑦𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑓 Fn 𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4039com34 91 . . . . . . . . . . . . . . . . 17 (𝑦𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4117, 40sylcom 30 . . . . . . . . . . . . . . . 16 (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4241adantl 482 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑦𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4342com14 96 . . . . . . . . . . . . . 14 (𝑓 Fn 𝑥 → (𝑦𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4416, 43syl7 74 . . . . . . . . . . . . 13 (𝑓 Fn 𝑥 → (𝑦𝑥 → ((𝑦𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4544exp4a 432 . . . . . . . . . . . 12 (𝑓 Fn 𝑥 → (𝑦𝑥 → (𝑦𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))))
4645pm2.43d 53 . . . . . . . . . . 11 (𝑓 Fn 𝑥 → (𝑦𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4746com34 91 . . . . . . . . . 10 (𝑓 Fn 𝑥 → (𝑦𝑥 → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4814, 47syldc 48 . . . . . . . . 9 (⟨𝑦, 𝑧⟩ ∈ 𝑓 → (𝑓 Fn 𝑥 → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
49483impd 1348 . . . . . . . 8 (⟨𝑦, 𝑧⟩ ∈ 𝑓 → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
5049exlimdv 1936 . . . . . . 7 (⟨𝑦, 𝑧⟩ ∈ 𝑓 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
5112, 50mpdi 45 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ 𝑓 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5251imp 407 . . . . 5 ((⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
5352exlimiv 1933 . . . 4 (∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
548, 53sylbi 216 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
5554exlimiv 1933 . 2 (∃𝑧𝑦, 𝑧⟩ ∈ 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
562, 55sylbi 216 1 (𝑦 ∈ dom 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wral 3064  wss 3910  cop 4592   cuni 4865   Se wse 5586   We wwe 5587  dom cdm 5633  cres 5635  Predcpred 6252  Fun wfun 6490   Fn wfn 6491  cfv 6496  wrecscwrecs 8242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fo 6502  df-fv 6504  df-ov 7360  df-2nd 7922  df-frecs 8212  df-wrecs 8243
This theorem is referenced by:  wfrlem14OLD  8268  wfr2aOLD  8272
  Copyright terms: Public domain W3C validator