Step | Hyp | Ref
| Expression |
1 | | vex 3426 |
. . 3
⊢ 𝑦 ∈ V |
2 | 1 | eldm2 5799 |
. 2
⊢ (𝑦 ∈ dom 𝐹 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐹) |
3 | | wfrfunOLD.3 |
. . . . . . 7
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
4 | | dfwrecsOLD 8100 |
. . . . . . 7
⊢
wrecs(𝑅, 𝐴, 𝐺) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
5 | 3, 4 | eqtri 2766 |
. . . . . 6
⊢ 𝐹 = ∪
{𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
6 | 5 | eleq2i 2830 |
. . . . 5
⊢
(〈𝑦, 𝑧〉 ∈ 𝐹 ↔ 〈𝑦, 𝑧〉 ∈ ∪
{𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) |
7 | | eluniab 4851 |
. . . . 5
⊢
(〈𝑦, 𝑧〉 ∈ ∪ {𝑓
∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑓(〈𝑦, 𝑧〉 ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
8 | 6, 7 | bitri 274 |
. . . 4
⊢
(〈𝑦, 𝑧〉 ∈ 𝐹 ↔ ∃𝑓(〈𝑦, 𝑧〉 ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
9 | | abid 2719 |
. . . . . . . 8
⊢ (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
10 | | elssuni 4868 |
. . . . . . . . 9
⊢ (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝑓 ⊆ ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) |
11 | 10, 5 | sseqtrrdi 3968 |
. . . . . . . 8
⊢ (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝑓 ⊆ 𝐹) |
12 | 9, 11 | sylbir 234 |
. . . . . . 7
⊢
(∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → 𝑓 ⊆ 𝐹) |
13 | | fnop 6526 |
. . . . . . . . . . 11
⊢ ((𝑓 Fn 𝑥 ∧ 〈𝑦, 𝑧〉 ∈ 𝑓) → 𝑦 ∈ 𝑥) |
14 | 13 | ex 412 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑥 → (〈𝑦, 𝑧〉 ∈ 𝑓 → 𝑦 ∈ 𝑥)) |
15 | | rsp 3129 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦 ∈
𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑦 ∈ 𝑥 → (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
16 | 15 | impcom 407 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
17 | | rsp 3129 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦 ∈ 𝑥 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥)) |
18 | | fndm 6520 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 Fn 𝑥 → dom 𝑓 = 𝑥) |
19 | 18 | sseq2d 3949 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 Fn 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥)) |
20 | 18 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 Fn 𝑥 → (𝑦 ∈ dom 𝑓 ↔ 𝑦 ∈ 𝑥)) |
21 | 19, 20 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 Fn 𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑥))) |
22 | 21 | biimprd 247 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 Fn 𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑥) → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓))) |
23 | 22 | expd 415 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 Fn 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦 ∈ 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓)))) |
24 | 23 | impcom 407 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ 𝑓 Fn 𝑥) → (𝑦 ∈ 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓))) |
25 | | wfrfunOLD.1 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑅 We 𝐴 |
26 | | wfrfunOLD.2 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑅 Se 𝐴 |
27 | 25, 26, 3 | wfrfunOLD 8121 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Fun 𝐹 |
28 | | funssfv 6777 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ 𝑦 ∈ dom 𝑓) → (𝐹‘𝑦) = (𝑓‘𝑦)) |
29 | 28 | 3adant3l 1178 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓)) → (𝐹‘𝑦) = (𝑓‘𝑦)) |
30 | | fun2ssres 6463 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) |
31 | 30 | 3adant3r 1179 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) |
32 | 31 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓)) → (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
33 | 29, 32 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓)) → ((𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
34 | 33 | biimprd 247 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓)) → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
35 | 27, 34 | mp3an1 1446 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓 ⊆ 𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓)) → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
36 | 35 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓) → (𝑓 ⊆ 𝐹 → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
37 | 36 | com23 86 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓) → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
38 | 24, 37 | syl6com 37 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ 𝑓 Fn 𝑥) → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))) |
39 | 38 | expd 415 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑓 Fn 𝑥 → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
40 | 39 | com34 91 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
41 | 17, 40 | sylcom 30 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑦 ∈
𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦 ∈ 𝑥 → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
42 | 41 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑦 ∈ 𝑥 → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
43 | 42 | com14 96 |
. . . . . . . . . . . . . 14
⊢ (𝑓 Fn 𝑥 → (𝑦 ∈ 𝑥 → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
44 | 16, 43 | syl7 74 |
. . . . . . . . . . . . 13
⊢ (𝑓 Fn 𝑥 → (𝑦 ∈ 𝑥 → ((𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
45 | 44 | exp4a 431 |
. . . . . . . . . . . 12
⊢ (𝑓 Fn 𝑥 → (𝑦 ∈ 𝑥 → (𝑦 ∈ 𝑥 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))) |
46 | 45 | pm2.43d 53 |
. . . . . . . . . . 11
⊢ (𝑓 Fn 𝑥 → (𝑦 ∈ 𝑥 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
47 | 46 | com34 91 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑥 → (𝑦 ∈ 𝑥 → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
48 | 14, 47 | syldc 48 |
. . . . . . . . 9
⊢
(〈𝑦, 𝑧〉 ∈ 𝑓 → (𝑓 Fn 𝑥 → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
49 | 48 | 3impd 1346 |
. . . . . . . 8
⊢
(〈𝑦, 𝑧〉 ∈ 𝑓 → ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
50 | 49 | exlimdv 1937 |
. . . . . . 7
⊢
(〈𝑦, 𝑧〉 ∈ 𝑓 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
51 | 12, 50 | mpdi 45 |
. . . . . 6
⊢
(〈𝑦, 𝑧〉 ∈ 𝑓 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
52 | 51 | imp 406 |
. . . . 5
⊢
((〈𝑦, 𝑧〉 ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
53 | 52 | exlimiv 1934 |
. . . 4
⊢
(∃𝑓(〈𝑦, 𝑧〉 ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
54 | 8, 53 | sylbi 216 |
. . 3
⊢
(〈𝑦, 𝑧〉 ∈ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
55 | 54 | exlimiv 1934 |
. 2
⊢
(∃𝑧〈𝑦, 𝑧〉 ∈ 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
56 | 2, 55 | sylbi 216 |
1
⊢ (𝑦 ∈ dom 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) |