MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fleqceilz Structured version   Visualization version   GIF version

Theorem fleqceilz 13890
Description: A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018.)
Assertion
Ref Expression
fleqceilz (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))

Proof of Theorem fleqceilz
StepHypRef Expression
1 flid 13844 . . 3 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
2 ceilid 13887 . . 3 (𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴)
31, 2eqtr4d 2777 . 2 (𝐴 ∈ ℤ → (⌊‘𝐴) = (⌈‘𝐴))
4 eqeq1 2738 . . . . . 6 ((⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
54adantr 480 . . . . 5 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℝ) → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
6 ceilidz 13888 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴))
7 eqcom 2741 . . . . . . . 8 ((⌈‘𝐴) = 𝐴𝐴 = (⌈‘𝐴))
86, 7bitrdi 287 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ 𝐴 = (⌈‘𝐴)))
98biimprd 248 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
109adantl 481 . . . . 5 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℝ) → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
115, 10sylbid 240 . . . 4 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℝ) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1211ex 412 . . 3 ((⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
13 flle 13835 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
14 df-ne 2938 . . . . 5 ((⌊‘𝐴) ≠ 𝐴 ↔ ¬ (⌊‘𝐴) = 𝐴)
15 necom 2991 . . . . . 6 ((⌊‘𝐴) ≠ 𝐴𝐴 ≠ (⌊‘𝐴))
16 reflcl 13832 . . . . . . . . . 10 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
17 id 22 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
1816, 17ltlend 11403 . . . . . . . . 9 (𝐴 ∈ ℝ → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴))))
19 breq1 5150 . . . . . . . . . . . . 13 ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
2019adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
21 ceilge 13881 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → 𝐴 ≤ (⌈‘𝐴))
22 ceilcl 13878 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (⌈‘𝐴) ∈ ℤ)
2322zred 12719 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (⌈‘𝐴) ∈ ℝ)
2417, 23lenltd 11404 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (𝐴 ≤ (⌈‘𝐴) ↔ ¬ (⌈‘𝐴) < 𝐴))
25 pm2.21 123 . . . . . . . . . . . . . . 15 (¬ (⌈‘𝐴) < 𝐴 → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
2624, 25biimtrdi 253 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (𝐴 ≤ (⌈‘𝐴) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ)))
2721, 26mpd 15 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
2827adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
2920, 28sylbid 240 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ))
3029ex 412 . . . . . . . . . 10 (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ)))
3130com23 86 . . . . . . . . 9 (𝐴 ∈ ℝ → ((⌊‘𝐴) < 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3218, 31sylbird 260 . . . . . . . 8 (𝐴 ∈ ℝ → (((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴)) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3332expd 415 . . . . . . 7 (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → (𝐴 ≠ (⌊‘𝐴) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3433com3r 87 . . . . . 6 (𝐴 ≠ (⌊‘𝐴) → (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3515, 34sylbi 217 . . . . 5 ((⌊‘𝐴) ≠ 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3614, 35sylbir 235 . . . 4 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3713, 36mpdi 45 . . 3 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3812, 37pm2.61i 182 . 2 (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
393, 38impbid2 226 1 (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  cfv 6562  cr 11151   < clt 11292  cle 11293  cz 12610  cfl 13826  cceil 13827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fl 13828  df-ceil 13829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator