Proof of Theorem fleqceilz
Step | Hyp | Ref
| Expression |
1 | | flid 13456 |
. . 3
⊢ (𝐴 ∈ ℤ →
(⌊‘𝐴) = 𝐴) |
2 | | ceilid 13499 |
. . 3
⊢ (𝐴 ∈ ℤ →
(⌈‘𝐴) = 𝐴) |
3 | 1, 2 | eqtr4d 2781 |
. 2
⊢ (𝐴 ∈ ℤ →
(⌊‘𝐴) =
(⌈‘𝐴)) |
4 | | eqeq1 2742 |
. . . . . 6
⊢
((⌊‘𝐴) =
𝐴 →
((⌊‘𝐴) =
(⌈‘𝐴) ↔
𝐴 = (⌈‘𝐴))) |
5 | 4 | adantr 480 |
. . . . 5
⊢
(((⌊‘𝐴)
= 𝐴 ∧ 𝐴 ∈ ℝ) →
((⌊‘𝐴) =
(⌈‘𝐴) ↔
𝐴 = (⌈‘𝐴))) |
6 | | ceilidz 13500 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔
(⌈‘𝐴) = 𝐴)) |
7 | | eqcom 2745 |
. . . . . . . 8
⊢
((⌈‘𝐴) =
𝐴 ↔ 𝐴 = (⌈‘𝐴)) |
8 | 6, 7 | bitrdi 286 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ 𝐴 = (⌈‘𝐴))) |
9 | 8 | biimprd 247 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ)) |
10 | 9 | adantl 481 |
. . . . 5
⊢
(((⌊‘𝐴)
= 𝐴 ∧ 𝐴 ∈ ℝ) → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ)) |
11 | 5, 10 | sylbid 239 |
. . . 4
⊢
(((⌊‘𝐴)
= 𝐴 ∧ 𝐴 ∈ ℝ) →
((⌊‘𝐴) =
(⌈‘𝐴) →
𝐴 ∈
ℤ)) |
12 | 11 | ex 412 |
. . 3
⊢
((⌊‘𝐴) =
𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))) |
13 | | flle 13447 |
. . . 4
⊢ (𝐴 ∈ ℝ →
(⌊‘𝐴) ≤
𝐴) |
14 | | df-ne 2943 |
. . . . 5
⊢
((⌊‘𝐴)
≠ 𝐴 ↔ ¬
(⌊‘𝐴) = 𝐴) |
15 | | necom 2996 |
. . . . . 6
⊢
((⌊‘𝐴)
≠ 𝐴 ↔ 𝐴 ≠ (⌊‘𝐴)) |
16 | | reflcl 13444 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ →
(⌊‘𝐴) ∈
ℝ) |
17 | | id 22 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ) |
18 | 16, 17 | ltlend 11050 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ →
((⌊‘𝐴) <
𝐴 ↔
((⌊‘𝐴) ≤
𝐴 ∧ 𝐴 ≠ (⌊‘𝐴)))) |
19 | | breq1 5073 |
. . . . . . . . . . . . 13
⊢
((⌊‘𝐴) =
(⌈‘𝐴) →
((⌊‘𝐴) <
𝐴 ↔
(⌈‘𝐴) <
𝐴)) |
20 | 19 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧
(⌊‘𝐴) =
(⌈‘𝐴)) →
((⌊‘𝐴) <
𝐴 ↔
(⌈‘𝐴) <
𝐴)) |
21 | | ceilge 13493 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (⌈‘𝐴)) |
22 | | ceilcl 13490 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℝ →
(⌈‘𝐴) ∈
ℤ) |
23 | 22 | zred 12355 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℝ →
(⌈‘𝐴) ∈
ℝ) |
24 | 17, 23 | lenltd 11051 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℝ → (𝐴 ≤ (⌈‘𝐴) ↔ ¬
(⌈‘𝐴) <
𝐴)) |
25 | | pm2.21 123 |
. . . . . . . . . . . . . . 15
⊢ (¬
(⌈‘𝐴) <
𝐴 →
((⌈‘𝐴) <
𝐴 → 𝐴 ∈ ℤ)) |
26 | 24, 25 | syl6bi 252 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℝ → (𝐴 ≤ (⌈‘𝐴) → ((⌈‘𝐴) < 𝐴 → 𝐴 ∈ ℤ))) |
27 | 21, 26 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℝ →
((⌈‘𝐴) <
𝐴 → 𝐴 ∈ ℤ)) |
28 | 27 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧
(⌊‘𝐴) =
(⌈‘𝐴)) →
((⌈‘𝐴) <
𝐴 → 𝐴 ∈ ℤ)) |
29 | 20, 28 | sylbid 239 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧
(⌊‘𝐴) =
(⌈‘𝐴)) →
((⌊‘𝐴) <
𝐴 → 𝐴 ∈ ℤ)) |
30 | 29 | ex 412 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ →
((⌊‘𝐴) =
(⌈‘𝐴) →
((⌊‘𝐴) <
𝐴 → 𝐴 ∈ ℤ))) |
31 | 30 | com23 86 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ →
((⌊‘𝐴) <
𝐴 →
((⌊‘𝐴) =
(⌈‘𝐴) →
𝐴 ∈
ℤ))) |
32 | 18, 31 | sylbird 259 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ →
(((⌊‘𝐴) ≤
𝐴 ∧ 𝐴 ≠ (⌊‘𝐴)) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))) |
33 | 32 | expd 415 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
((⌊‘𝐴) ≤
𝐴 → (𝐴 ≠ (⌊‘𝐴) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))) |
34 | 33 | com3r 87 |
. . . . . 6
⊢ (𝐴 ≠ (⌊‘𝐴) → (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))) |
35 | 15, 34 | sylbi 216 |
. . . . 5
⊢
((⌊‘𝐴)
≠ 𝐴 → (𝐴 ∈ ℝ →
((⌊‘𝐴) ≤
𝐴 →
((⌊‘𝐴) =
(⌈‘𝐴) →
𝐴 ∈
ℤ)))) |
36 | 14, 35 | sylbir 234 |
. . . 4
⊢ (¬
(⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))) |
37 | 13, 36 | mpdi 45 |
. . 3
⊢ (¬
(⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))) |
38 | 12, 37 | pm2.61i 182 |
. 2
⊢ (𝐴 ∈ ℝ →
((⌊‘𝐴) =
(⌈‘𝐴) →
𝐴 ∈
ℤ)) |
39 | 3, 38 | impbid2 225 |
1
⊢ (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔
(⌊‘𝐴) =
(⌈‘𝐴))) |