MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fleqceilz Structured version   Visualization version   GIF version

Theorem fleqceilz 12908
Description: A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018.)
Assertion
Ref Expression
fleqceilz (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))

Proof of Theorem fleqceilz
StepHypRef Expression
1 flid 12864 . . 3 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
2 ceilid 12905 . . 3 (𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴)
31, 2eqtr4d 2836 . 2 (𝐴 ∈ ℤ → (⌊‘𝐴) = (⌈‘𝐴))
4 eqeq1 2803 . . . . . 6 ((⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
54adantr 473 . . . . 5 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℝ) → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
6 ceilidz 12906 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴))
7 eqcom 2806 . . . . . . . 8 ((⌈‘𝐴) = 𝐴𝐴 = (⌈‘𝐴))
86, 7syl6bb 279 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ 𝐴 = (⌈‘𝐴)))
98biimprd 240 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
109adantl 474 . . . . 5 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℝ) → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
115, 10sylbid 232 . . . 4 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℝ) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1211ex 402 . . 3 ((⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
13 flle 12855 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
14 df-ne 2972 . . . . 5 ((⌊‘𝐴) ≠ 𝐴 ↔ ¬ (⌊‘𝐴) = 𝐴)
15 necom 3024 . . . . . 6 ((⌊‘𝐴) ≠ 𝐴𝐴 ≠ (⌊‘𝐴))
16 reflcl 12852 . . . . . . . . . 10 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
17 id 22 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
1816, 17ltlend 10472 . . . . . . . . 9 (𝐴 ∈ ℝ → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴))))
19 breq1 4846 . . . . . . . . . . . . 13 ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
2019adantl 474 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
21 ceilge 12900 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → 𝐴 ≤ (⌈‘𝐴))
22 ceilcl 12898 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (⌈‘𝐴) ∈ ℤ)
2322zred 11772 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (⌈‘𝐴) ∈ ℝ)
2417, 23lenltd 10473 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (𝐴 ≤ (⌈‘𝐴) ↔ ¬ (⌈‘𝐴) < 𝐴))
25 pm2.21 121 . . . . . . . . . . . . . . 15 (¬ (⌈‘𝐴) < 𝐴 → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
2624, 25syl6bi 245 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (𝐴 ≤ (⌈‘𝐴) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ)))
2721, 26mpd 15 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
2827adantr 473 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
2920, 28sylbid 232 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ))
3029ex 402 . . . . . . . . . 10 (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ)))
3130com23 86 . . . . . . . . 9 (𝐴 ∈ ℝ → ((⌊‘𝐴) < 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3218, 31sylbird 252 . . . . . . . 8 (𝐴 ∈ ℝ → (((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴)) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3332expd 405 . . . . . . 7 (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → (𝐴 ≠ (⌊‘𝐴) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3433com3r 87 . . . . . 6 (𝐴 ≠ (⌊‘𝐴) → (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3515, 34sylbi 209 . . . . 5 ((⌊‘𝐴) ≠ 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3614, 35sylbir 227 . . . 4 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3713, 36mpdi 45 . . 3 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3812, 37pm2.61i 177 . 2 (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
393, 38impbid2 218 1 (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wne 2971   class class class wbr 4843  cfv 6101  cr 10223   < clt 10363  cle 10364  cz 11666  cfl 12846  cceil 12847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-inf 8591  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-n0 11581  df-z 11667  df-uz 11931  df-fl 12848  df-ceil 12849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator