| Step | Hyp | Ref
| Expression |
| 1 | | breq2 5147 |
. . . . . 6
⊢ (𝑥 = 𝑤 → ((abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑤)) |
| 2 | 1 | ralbidv 3178 |
. . . . 5
⊢ (𝑥 = 𝑤 → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑤)) |
| 3 | 2 | rexralbidv 3223 |
. . . 4
⊢ (𝑥 = 𝑤 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑤)) |
| 4 | 3 | cbvralvw 3237 |
. . 3
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑤 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑤) |
| 5 | | rphalfcl 13062 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) ∈
ℝ+) |
| 6 | | breq2 5147 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 / 2) → ((abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑤 ↔ (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2))) |
| 7 | 6 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑤 = (𝑥 / 2) → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑤 ↔ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2))) |
| 8 | 7 | rexralbidv 3223 |
. . . . . . . 8
⊢ (𝑤 = (𝑥 / 2) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑤 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2))) |
| 9 | 8 | rspcv 3618 |
. . . . . . 7
⊢ ((𝑥 / 2) ∈ ℝ+
→ (∀𝑤 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2))) |
| 10 | 5, 9 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (∀𝑤 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2))) |
| 11 | 10 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∀𝑤 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2))) |
| 12 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) |
| 13 | 12 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑚)‘𝑧)) |
| 14 | 13 | fvoveq1d 7453 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) = (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧)))) |
| 15 | 14 | breq1d 5153 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → ((abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) ↔ (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2))) |
| 16 | 15 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) ↔ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2))) |
| 17 | 16 | cbvralvw 3237 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) ↔ ∀𝑚 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) |
| 18 | 17 | biimpi 216 |
. . . . . . 7
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) |
| 19 | | uzss 12901 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → (ℤ≥‘𝑘) ⊆
(ℤ≥‘𝑗)) |
| 20 | 19 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) →
(ℤ≥‘𝑘) ⊆ (ℤ≥‘𝑗)) |
| 21 | | ssralv 4052 |
. . . . . . . . . . . . . 14
⊢
((ℤ≥‘𝑘) ⊆ (ℤ≥‘𝑗) → (∀𝑚 ∈
(ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2))) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑚 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2))) |
| 23 | | r19.26 3111 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑧 ∈
𝑆 ((abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) ↔ (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2))) |
| 24 | | ulmcau.f |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| 25 | 24 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| 26 | 25 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| 27 | | ulmcau.z |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 28 | 27 | uztrn2 12897 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 29 | 28 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 30 | 27 | uztrn2 12897 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑚 ∈ (ℤ≥‘𝑘)) → 𝑚 ∈ 𝑍) |
| 31 | 29, 30 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) → 𝑚 ∈ 𝑍) |
| 32 | 26, 31 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑚) ∈ (ℂ ↑m 𝑆)) |
| 33 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹‘𝑚) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑚):𝑆⟶ℂ) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑚):𝑆⟶ℂ) |
| 35 | 34 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑚)‘𝑧) ∈ ℂ) |
| 36 | 25 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ (ℂ ↑m 𝑆)) |
| 37 | 36 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑗) ∈ (ℂ ↑m 𝑆)) |
| 38 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹‘𝑗) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑗):𝑆⟶ℂ) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑗):𝑆⟶ℂ) |
| 40 | 39 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑗)‘𝑧) ∈ ℂ) |
| 41 | 35, 40 | abssubd 15492 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) ∧ 𝑧 ∈ 𝑆) → (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) = (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧)))) |
| 42 | 41 | breq1d 5153 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) ∧ 𝑧 ∈ 𝑆) → ((abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) ↔ (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < (𝑥 / 2))) |
| 43 | 42 | biimpd 229 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) ∧ 𝑧 ∈ 𝑆) → ((abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < (𝑥 / 2))) |
| 44 | | ffvelcdm 7101 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹:𝑍⟶(ℂ ↑m 𝑆) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
| 45 | 25, 28, 44 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
| 46 | 45 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
| 47 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
| 48 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑘):𝑆⟶ℂ) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑘):𝑆⟶ℂ) |
| 50 | 49 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
| 51 | | rpre 13043 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
| 52 | 51 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑥 ∈ ℝ) |
| 53 | 52 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) ∧ 𝑧 ∈ 𝑆) → 𝑥 ∈ ℝ) |
| 54 | | abs3lem 15377 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐹‘𝑘)‘𝑧) ∈ ℂ ∧ ((𝐹‘𝑚)‘𝑧) ∈ ℂ) ∧ (((𝐹‘𝑗)‘𝑧) ∈ ℂ ∧ 𝑥 ∈ ℝ)) →
(((abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 55 | 50, 35, 40, 53, 54 | syl22anc 839 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) ∧ 𝑧 ∈ 𝑆) → (((abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 56 | 43, 55 | sylan2d 605 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) ∧ 𝑧 ∈ 𝑆) → (((abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 57 | 56 | ralimdva 3167 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) → (∀𝑧 ∈ 𝑆 ((abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) → ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 58 | 23, 57 | biimtrrid 243 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) → ((∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) → ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 59 | 58 | expdimp 452 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 60 | 59 | an32s 652 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) ∧ 𝑚 ∈ (ℤ≥‘𝑘)) → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 61 | 60 | ralimdva 3167 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 62 | 22, 61 | syld 47 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑚 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 63 | 62 | impancom 451 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ ∀𝑚 ∈
(ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 64 | 63 | an32s 652 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ 𝑍) ∧ ∀𝑚 ∈
(ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 65 | 64 | ralimdva 3167 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑚 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 66 | 65 | ex 412 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥))) |
| 67 | 66 | com23 86 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → (∀𝑚 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑚)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥))) |
| 68 | 18, 67 | mpdi 45 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 69 | 68 | reximdva 3168 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < (𝑥 / 2) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 70 | 11, 69 | syld 47 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∀𝑤 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 71 | 70 | ralrimdva 3154 |
. . 3
⊢ (𝜑 → (∀𝑤 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑤 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 72 | 4, 71 | biimtrid 242 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 73 | | eluzelz 12888 |
. . . . . . . . 9
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
| 74 | 73, 27 | eleq2s 2859 |
. . . . . . . 8
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
| 75 | | uzid 12893 |
. . . . . . . 8
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
| 76 | 74, 75 | syl 17 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑗)) |
| 77 | 76 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑗)) |
| 78 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (ℤ≥‘𝑘) =
(ℤ≥‘𝑗)) |
| 79 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
| 80 | 79 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑗)‘𝑧)) |
| 81 | 80 | fvoveq1d 7453 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) = (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧)))) |
| 82 | 81 | breq1d 5153 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → ((abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 83 | 82 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 84 | 78, 83 | raleqbidv 3346 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → (∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 85 | 84 | rspcv 3618 |
. . . . . 6
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 86 | 77, 85 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |
| 87 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
| 88 | 87 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → ((𝐹‘𝑚)‘𝑧) = ((𝐹‘𝑘)‘𝑧)) |
| 89 | 88 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑘 → (((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧)) = (((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑘)‘𝑧))) |
| 90 | 89 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑚 = 𝑘 → (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) = (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑘)‘𝑧)))) |
| 91 | 90 | breq1d 5153 |
. . . . . . . 8
⊢ (𝑚 = 𝑘 → ((abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑘)‘𝑧))) < 𝑥)) |
| 92 | 91 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑘)‘𝑧))) < 𝑥)) |
| 93 | 92 | cbvralvw 3237 |
. . . . . 6
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑘)‘𝑧))) < 𝑥) |
| 94 | 24 | ffvelcdmda 7104 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ (ℂ ↑m 𝑆)) |
| 95 | 94 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑗) ∈ (ℂ ↑m 𝑆)) |
| 96 | 95, 38 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑗):𝑆⟶ℂ) |
| 97 | 96 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑗)‘𝑧) ∈ ℂ) |
| 98 | 24, 28, 44 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
| 99 | 98 | anassrs 467 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
| 100 | 99, 48 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘):𝑆⟶ℂ) |
| 101 | 100 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
| 102 | 97, 101 | abssubd 15492 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑧 ∈ 𝑆) → (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑘)‘𝑧))) = (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧)))) |
| 103 | 102 | breq1d 5153 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑧 ∈ 𝑆) → ((abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑘)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥)) |
| 104 | 103 | ralbidva 3176 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑘)‘𝑧))) < 𝑥 ↔ ∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥)) |
| 105 | 104 | ralbidva 3176 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑘)‘𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥)) |
| 106 | 93, 105 | bitrid 283 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑗)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥)) |
| 107 | 86, 106 | sylibd 239 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥)) |
| 108 | 107 | reximdva 3168 |
. . 3
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥)) |
| 109 | 108 | ralimdv 3169 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥)) |
| 110 | 72, 109 | impbid 212 |
1
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑚 ∈ (ℤ≥‘𝑘)∀𝑧 ∈ 𝑆 (abs‘(((𝐹‘𝑘)‘𝑧) − ((𝐹‘𝑚)‘𝑧))) < 𝑥)) |