MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmcaulem Structured version   Visualization version   GIF version

Theorem ulmcaulem 25458
Description: Lemma for ulmcau 25459 and ulmcau2 25460: show the equivalence of the four- and five-quantifier forms of the Cauchy convergence condition. Compare cau3 14995. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
ulmcau.z 𝑍 = (ℤ𝑀)
ulmcau.m (𝜑𝑀 ∈ ℤ)
ulmcau.s (𝜑𝑆𝑉)
ulmcau.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
Assertion
Ref Expression
ulmcaulem (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑚,𝑥,𝑧,𝐹   𝜑,𝑗,𝑘,𝑚,𝑥,𝑧   𝑆,𝑗,𝑘,𝑚,𝑥,𝑧   𝑗,𝑍,𝑘,𝑚,𝑥,𝑧   𝑗,𝑀,𝑘,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑚)   𝑉(𝑥,𝑧,𝑗,𝑘,𝑚)

Proof of Theorem ulmcaulem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 5074 . . . . . 6 (𝑥 = 𝑤 → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤))
21ralbidv 3120 . . . . 5 (𝑥 = 𝑤 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤))
32rexralbidv 3229 . . . 4 (𝑥 = 𝑤 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤))
43cbvralvw 3372 . . 3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤)
5 rphalfcl 12686 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
6 breq2 5074 . . . . . . . . . 10 (𝑤 = (𝑥 / 2) → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 ↔ (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
76ralbidv 3120 . . . . . . . . 9 (𝑤 = (𝑥 / 2) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
87rexralbidv 3229 . . . . . . . 8 (𝑤 = (𝑥 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
98rspcv 3547 . . . . . . 7 ((𝑥 / 2) ∈ ℝ+ → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
105, 9syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
1110adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
12 fveq2 6756 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
1312fveq1d 6758 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑚)‘𝑧))
1413fvoveq1d 7277 . . . . . . . . . . 11 (𝑘 = 𝑚 → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) = (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))))
1514breq1d 5080 . . . . . . . . . 10 (𝑘 = 𝑚 → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ↔ (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
1615ralbidv 3120 . . . . . . . . 9 (𝑘 = 𝑚 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
1716cbvralvw 3372 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ↔ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2))
1817biimpi 215 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2))
19 uzss 12534 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → (ℤ𝑘) ⊆ (ℤ𝑗))
2019ad2antlr 723 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (ℤ𝑘) ⊆ (ℤ𝑗))
21 ssralv 3983 . . . . . . . . . . . . . 14 ((ℤ𝑘) ⊆ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
2220, 21syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
23 r19.26 3094 . . . . . . . . . . . . . . . . 17 (∀𝑧𝑆 ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) ↔ (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
24 ulmcau.f . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
2524adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
2625ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
27 ulmcau.z . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑍 = (ℤ𝑀)
2827uztrn2 12530 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2928adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3027uztrn2 12530 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘𝑍𝑚 ∈ (ℤ𝑘)) → 𝑚𝑍)
3129, 30sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑚𝑍)
3226, 31ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑚) ∈ (ℂ ↑m 𝑆))
33 elmapi 8595 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑚) ∈ (ℂ ↑m 𝑆) → (𝐹𝑚):𝑆⟶ℂ)
3432, 33syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑚):𝑆⟶ℂ)
3534ffvelrnda 6943 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((𝐹𝑚)‘𝑧) ∈ ℂ)
3625ffvelrnda 6943 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
3736ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
38 elmapi 8595 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑗) ∈ (ℂ ↑m 𝑆) → (𝐹𝑗):𝑆⟶ℂ)
3937, 38syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑗):𝑆⟶ℂ)
4039ffvelrnda 6943 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((𝐹𝑗)‘𝑧) ∈ ℂ)
4135, 40abssubd 15093 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) = (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))))
4241breq1d 5080 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ↔ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑥 / 2)))
4342biimpd 228 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑥 / 2)))
44 ffvelrn 6941 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹:𝑍⟶(ℂ ↑m 𝑆) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
4525, 28, 44syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
4645anassrs 467 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
4746adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
48 elmapi 8595 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4947, 48syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑘):𝑆⟶ℂ)
5049ffvelrnda 6943 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
51 rpre 12667 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
5251ad2antlr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑥 ∈ ℝ)
5352ad3antrrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → 𝑥 ∈ ℝ)
54 abs3lem 14978 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹𝑘)‘𝑧) ∈ ℂ ∧ ((𝐹𝑚)‘𝑧) ∈ ℂ) ∧ (((𝐹𝑗)‘𝑧) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5550, 35, 40, 53, 54syl22anc 835 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → (((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5643, 55sylan2d 604 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → (((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5756ralimdva 3102 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (∀𝑧𝑆 ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5823, 57syl5bir 242 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → ((∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5958expdimp 452 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6059an32s 648 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) ∧ 𝑚 ∈ (ℤ𝑘)) → (∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6160ralimdva 3102 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6222, 61syld 47 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6362impancom 451 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6463an32s 648 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6564ralimdva 3102 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6665ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥)))
6766com23 86 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥)))
6818, 67mpdi 45 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6968reximdva 3202 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
7011, 69syld 47 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
7170ralrimdva 3112 . . 3 (𝜑 → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
724, 71syl5bi 241 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
73 eluzelz 12521 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
7473, 27eleq2s 2857 . . . . . . . 8 (𝑗𝑍𝑗 ∈ ℤ)
75 uzid 12526 . . . . . . . 8 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
7674, 75syl 17 . . . . . . 7 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
7776adantl 481 . . . . . 6 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑗))
78 fveq2 6756 . . . . . . . 8 (𝑘 = 𝑗 → (ℤ𝑘) = (ℤ𝑗))
79 fveq2 6756 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
8079fveq1d 6758 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑗)‘𝑧))
8180fvoveq1d 7277 . . . . . . . . . 10 (𝑘 = 𝑗 → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) = (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))))
8281breq1d 5080 . . . . . . . . 9 (𝑘 = 𝑗 → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
8382ralbidv 3120 . . . . . . . 8 (𝑘 = 𝑗 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
8478, 83raleqbidv 3327 . . . . . . 7 (𝑘 = 𝑗 → (∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
8584rspcv 3547 . . . . . 6 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
8677, 85syl 17 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
87 fveq2 6756 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
8887fveq1d 6758 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝐹𝑚)‘𝑧) = ((𝐹𝑘)‘𝑧))
8988oveq2d 7271 . . . . . . . . . 10 (𝑚 = 𝑘 → (((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧)) = (((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧)))
9089fveq2d 6760 . . . . . . . . 9 (𝑚 = 𝑘 → (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) = (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))))
9190breq1d 5080 . . . . . . . 8 (𝑚 = 𝑘 → ((abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥))
9291ralbidv 3120 . . . . . . 7 (𝑚 = 𝑘 → (∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥))
9392cbvralvw 3372 . . . . . 6 (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥)
9424ffvelrnda 6943 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
9594adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
9695, 38syl 17 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗):𝑆⟶ℂ)
9796ffvelrnda 6943 . . . . . . . . . 10 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑗)‘𝑧) ∈ ℂ)
9824, 28, 44syl2an 595 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
9998anassrs 467 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
10099, 48syl 17 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘):𝑆⟶ℂ)
101100ffvelrnda 6943 . . . . . . . . . 10 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
10297, 101abssubd 15093 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) = (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))))
103102breq1d 5080 . . . . . . . 8 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
104103ralbidva 3119 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
105104ralbidva 3119 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
10693, 105syl5bb 282 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
10786, 106sylibd 238 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
108107reximdva 3202 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
109108ralimdv 3103 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
11072, 109impbid 211 1 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cc 10800  cr 10801   < clt 10940  cmin 11135   / cdiv 11562  2c2 11958  cz 12249  cuz 12511  +crp 12659  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  ulmcau  25459  ulmcau2  25460
  Copyright terms: Public domain W3C validator