MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmcaulem Structured version   Visualization version   GIF version

Theorem ulmcaulem 26336
Description: Lemma for ulmcau 26337 and ulmcau2 26338: show the equivalence of the four- and five-quantifier forms of the Cauchy convergence condition. Compare cau3 15298. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
ulmcau.z 𝑍 = (ℤ𝑀)
ulmcau.m (𝜑𝑀 ∈ ℤ)
ulmcau.s (𝜑𝑆𝑉)
ulmcau.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
Assertion
Ref Expression
ulmcaulem (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑚,𝑥,𝑧,𝐹   𝜑,𝑗,𝑘,𝑚,𝑥,𝑧   𝑆,𝑗,𝑘,𝑚,𝑥,𝑧   𝑗,𝑍,𝑘,𝑚,𝑥,𝑧   𝑗,𝑀,𝑘,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑚)   𝑉(𝑥,𝑧,𝑗,𝑘,𝑚)

Proof of Theorem ulmcaulem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 5106 . . . . . 6 (𝑥 = 𝑤 → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤))
21ralbidv 3156 . . . . 5 (𝑥 = 𝑤 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤))
32rexralbidv 3201 . . . 4 (𝑥 = 𝑤 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤))
43cbvralvw 3213 . . 3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤)
5 rphalfcl 12956 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
6 breq2 5106 . . . . . . . . . 10 (𝑤 = (𝑥 / 2) → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 ↔ (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
76ralbidv 3156 . . . . . . . . 9 (𝑤 = (𝑥 / 2) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
87rexralbidv 3201 . . . . . . . 8 (𝑤 = (𝑥 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
98rspcv 3581 . . . . . . 7 ((𝑥 / 2) ∈ ℝ+ → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
105, 9syl 17 . . . . . 6 (𝑥 ∈ ℝ+ → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
1110adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
12 fveq2 6840 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
1312fveq1d 6842 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑚)‘𝑧))
1413fvoveq1d 7391 . . . . . . . . . . 11 (𝑘 = 𝑚 → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) = (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))))
1514breq1d 5112 . . . . . . . . . 10 (𝑘 = 𝑚 → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ↔ (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
1615ralbidv 3156 . . . . . . . . 9 (𝑘 = 𝑚 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
1716cbvralvw 3213 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ↔ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2))
1817biimpi 216 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2))
19 uzss 12792 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → (ℤ𝑘) ⊆ (ℤ𝑗))
2019ad2antlr 727 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (ℤ𝑘) ⊆ (ℤ𝑗))
21 ssralv 4012 . . . . . . . . . . . . . 14 ((ℤ𝑘) ⊆ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
2220, 21syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
23 r19.26 3091 . . . . . . . . . . . . . . . . 17 (∀𝑧𝑆 ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) ↔ (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)))
24 ulmcau.f . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
2524adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
2625ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
27 ulmcau.z . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑍 = (ℤ𝑀)
2827uztrn2 12788 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2928adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3027uztrn2 12788 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘𝑍𝑚 ∈ (ℤ𝑘)) → 𝑚𝑍)
3129, 30sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → 𝑚𝑍)
3226, 31ffvelcdmd 7039 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑚) ∈ (ℂ ↑m 𝑆))
33 elmapi 8799 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑚) ∈ (ℂ ↑m 𝑆) → (𝐹𝑚):𝑆⟶ℂ)
3432, 33syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑚):𝑆⟶ℂ)
3534ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((𝐹𝑚)‘𝑧) ∈ ℂ)
3625ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
3736ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
38 elmapi 8799 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑗) ∈ (ℂ ↑m 𝑆) → (𝐹𝑗):𝑆⟶ℂ)
3937, 38syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑗):𝑆⟶ℂ)
4039ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((𝐹𝑗)‘𝑧) ∈ ℂ)
4135, 40abssubd 15398 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) = (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))))
4241breq1d 5112 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ↔ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑥 / 2)))
4342biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑥 / 2)))
44 ffvelcdm 7035 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹:𝑍⟶(ℂ ↑m 𝑆) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
4525, 28, 44syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
4645anassrs 467 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
4746adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
48 elmapi 8799 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
4947, 48syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (𝐹𝑘):𝑆⟶ℂ)
5049ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
51 rpre 12936 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
5251ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑥 ∈ ℝ)
5352ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → 𝑥 ∈ ℝ)
54 abs3lem 15281 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹𝑘)‘𝑧) ∈ ℂ ∧ ((𝐹𝑚)‘𝑧) ∈ ℂ) ∧ (((𝐹𝑗)‘𝑧) ∈ ℂ ∧ 𝑥 ∈ ℝ)) → (((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5550, 35, 40, 53, 54syl22anc 838 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → (((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5643, 55sylan2d 605 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ 𝑧𝑆) → (((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5756ralimdva 3145 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → (∀𝑧𝑆 ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5823, 57biimtrrid 243 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) → ((∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
5958expdimp 452 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑚 ∈ (ℤ𝑘)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6059an32s 652 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) ∧ 𝑚 ∈ (ℤ𝑘)) → (∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6160ralimdva 3145 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6222, 61syld 47 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6362impancom 451 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6463an32s 652 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6564ralimdva 3145 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2)) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6665ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥)))
6766com23 86 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥)))
6818, 67mpdi 45 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
6968reximdva 3146 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < (𝑥 / 2) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
7011, 69syld 47 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
7170ralrimdva 3133 . . 3 (𝜑 → (∀𝑤 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑤 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
724, 71biimtrid 242 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
73 eluzelz 12779 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
7473, 27eleq2s 2846 . . . . . . . 8 (𝑗𝑍𝑗 ∈ ℤ)
75 uzid 12784 . . . . . . . 8 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
7674, 75syl 17 . . . . . . 7 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
7776adantl 481 . . . . . 6 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑗))
78 fveq2 6840 . . . . . . . 8 (𝑘 = 𝑗 → (ℤ𝑘) = (ℤ𝑗))
79 fveq2 6840 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
8079fveq1d 6842 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑗)‘𝑧))
8180fvoveq1d 7391 . . . . . . . . . 10 (𝑘 = 𝑗 → (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) = (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))))
8281breq1d 5112 . . . . . . . . 9 (𝑘 = 𝑗 → ((abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
8382ralbidv 3156 . . . . . . . 8 (𝑘 = 𝑗 → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
8478, 83raleqbidv 3316 . . . . . . 7 (𝑘 = 𝑗 → (∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
8584rspcv 3581 . . . . . 6 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
8677, 85syl 17 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
87 fveq2 6840 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
8887fveq1d 6842 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((𝐹𝑚)‘𝑧) = ((𝐹𝑘)‘𝑧))
8988oveq2d 7385 . . . . . . . . . 10 (𝑚 = 𝑘 → (((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧)) = (((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧)))
9089fveq2d 6844 . . . . . . . . 9 (𝑚 = 𝑘 → (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) = (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))))
9190breq1d 5112 . . . . . . . 8 (𝑚 = 𝑘 → ((abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥))
9291ralbidv 3156 . . . . . . 7 (𝑚 = 𝑘 → (∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥))
9392cbvralvw 3213 . . . . . 6 (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥)
9424ffvelcdmda 7038 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
9594adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ∈ (ℂ ↑m 𝑆))
9695, 38syl 17 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗):𝑆⟶ℂ)
9796ffvelcdmda 7038 . . . . . . . . . 10 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑗)‘𝑧) ∈ ℂ)
9824, 28, 44syl2an 596 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
9998anassrs 467 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
10099, 48syl 17 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘):𝑆⟶ℂ)
101100ffvelcdmda 7038 . . . . . . . . . 10 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
10297, 101abssubd 15398 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) = (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))))
103102breq1d 5112 . . . . . . . 8 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥 ↔ (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
104103ralbidva 3154 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
105104ralbidva 3154 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑘)‘𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
10693, 105bitrid 283 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑗)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
10786, 106sylibd 239 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
108107reximdva 3146 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
109108ralimdv 3147 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥))
11072, 109impbid 212 1 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑗)‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑚 ∈ (ℤ𝑘)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − ((𝐹𝑚)‘𝑧))) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3911   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  cc 11042  cr 11043   < clt 11184  cmin 11381   / cdiv 11811  2c2 12217  cz 12505  cuz 12769  +crp 12927  abscabs 15176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178
This theorem is referenced by:  ulmcau  26337  ulmcau2  26338
  Copyright terms: Public domain W3C validator