Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neificl Structured version   Visualization version   GIF version

Theorem neificl 37777
Description: Neighborhoods are closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Nov-2013.)
Assertion
Ref Expression
neificl (((𝐽 ∈ Top ∧ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem neificl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . 3 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ Fin)
2 innei 23063 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
323expib 1122 . . . . . . 7 (𝐽 ∈ Top → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
43ralrimivv 3185 . . . . . 6 (𝐽 ∈ Top → ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
5 fiint 9338 . . . . . 6 (∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)))
64, 5sylib 218 . . . . 5 (𝐽 ∈ Top → ∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)))
7 sseq1 3984 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ⊆ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)))
8 neeq1 2994 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ≠ ∅ ↔ 𝑁 ≠ ∅))
9 eleq1 2822 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ∈ Fin ↔ 𝑁 ∈ Fin))
107, 8, 93anbi123d 1438 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin)))
11 3ancomb 1098 . . . . . . . . 9 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
12 3anass 1094 . . . . . . . . 9 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1311, 12bitri 275 . . . . . . . 8 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1410, 13bitrdi 287 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))))
15 inteq 4925 . . . . . . . 8 (𝑥 = 𝑁 𝑥 = 𝑁)
1615eleq1d 2819 . . . . . . 7 (𝑥 = 𝑁 → ( 𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
1714, 16imbi12d 344 . . . . . 6 (𝑥 = 𝑁 → (((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) ↔ ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
1817spcgv 3575 . . . . 5 (𝑁 ∈ Fin → (∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
196, 18syl5 34 . . . 4 (𝑁 ∈ Fin → (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
2019com3l 89 . . 3 (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → (𝑁 ∈ Fin → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
211, 20mpdi 45 . 2 (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
2221impl 455 1 (((𝐽 ∈ Top ∧ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2108  wne 2932  wral 3051  cin 3925  wss 3926  c0 4308   cint 4922  cfv 6531  Fincfn 8959  Topctop 22831  neicnei 23035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1o 8480  df-2o 8481  df-en 8960  df-fin 8963  df-top 22832  df-nei 23036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator