Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neificl Structured version   Visualization version   GIF version

Theorem neificl 37354
Description: Neighborhoods are closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Nov-2013.)
Assertion
Ref Expression
neificl (((𝐽 ∈ Top ∧ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem neificl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 769 . . 3 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ Fin)
2 innei 23073 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
323expib 1119 . . . . . . 7 (𝐽 ∈ Top → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
43ralrimivv 3188 . . . . . 6 (𝐽 ∈ Top → ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
5 fiint 9350 . . . . . 6 (∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)))
64, 5sylib 217 . . . . 5 (𝐽 ∈ Top → ∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)))
7 sseq1 4002 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ⊆ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)))
8 neeq1 2992 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ≠ ∅ ↔ 𝑁 ≠ ∅))
9 eleq1 2813 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ∈ Fin ↔ 𝑁 ∈ Fin))
107, 8, 93anbi123d 1432 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin)))
11 3ancomb 1096 . . . . . . . . 9 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
12 3anass 1092 . . . . . . . . 9 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1311, 12bitri 274 . . . . . . . 8 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1410, 13bitrdi 286 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))))
15 inteq 4953 . . . . . . . 8 (𝑥 = 𝑁 𝑥 = 𝑁)
1615eleq1d 2810 . . . . . . 7 (𝑥 = 𝑁 → ( 𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
1714, 16imbi12d 343 . . . . . 6 (𝑥 = 𝑁 → (((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) ↔ ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
1817spcgv 3580 . . . . 5 (𝑁 ∈ Fin → (∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
196, 18syl5 34 . . . 4 (𝑁 ∈ Fin → (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
2019com3l 89 . . 3 (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → (𝑁 ∈ Fin → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
211, 20mpdi 45 . 2 (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
2221impl 454 1 (((𝐽 ∈ Top ∧ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084  wal 1531   = wceq 1533  wcel 2098  wne 2929  wral 3050  cin 3943  wss 3944  c0 4322   cint 4950  cfv 6549  Fincfn 8964  Topctop 22839  neicnei 23045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-om 7872  df-1o 8487  df-er 8725  df-en 8965  df-fin 8968  df-top 22840  df-nei 23046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator