Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neificl Structured version   Visualization version   GIF version

Theorem neificl 35163
Description: Neighborhoods are closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Nov-2013.)
Assertion
Ref Expression
neificl (((𝐽 ∈ Top ∧ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem neificl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . 3 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ Fin)
2 innei 21739 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
323expib 1119 . . . . . . 7 (𝐽 ∈ Top → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
43ralrimivv 3185 . . . . . 6 (𝐽 ∈ Top → ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
5 fiint 8794 . . . . . 6 (∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)))
64, 5sylib 221 . . . . 5 (𝐽 ∈ Top → ∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)))
7 sseq1 3978 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ⊆ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)))
8 neeq1 3076 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ≠ ∅ ↔ 𝑁 ≠ ∅))
9 eleq1 2903 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ∈ Fin ↔ 𝑁 ∈ Fin))
107, 8, 93anbi123d 1433 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin)))
11 3ancomb 1096 . . . . . . . . 9 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
12 3anass 1092 . . . . . . . . 9 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1311, 12bitri 278 . . . . . . . 8 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1410, 13syl6bb 290 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))))
15 inteq 4865 . . . . . . . 8 (𝑥 = 𝑁 𝑥 = 𝑁)
1615eleq1d 2900 . . . . . . 7 (𝑥 = 𝑁 → ( 𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
1714, 16imbi12d 348 . . . . . 6 (𝑥 = 𝑁 → (((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) ↔ ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
1817spcgv 3581 . . . . 5 (𝑁 ∈ Fin → (∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
196, 18syl5 34 . . . 4 (𝑁 ∈ Fin → (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
2019com3l 89 . . 3 (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → (𝑁 ∈ Fin → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
211, 20mpdi 45 . 2 (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
2221impl 459 1 (((𝐽 ∈ Top ∧ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wal 1536   = wceq 1538  wcel 2115  wne 3014  wral 3133  cin 3918  wss 3919  c0 4276   cint 4862  cfv 6345  Fincfn 8507  Topctop 21507  neicnei 21711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-en 8508  df-fin 8511  df-top 21508  df-nei 21712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator