Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neificl Structured version   Visualization version   GIF version

Theorem neificl 35890
Description: Neighborhoods are closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Nov-2013.)
Assertion
Ref Expression
neificl (((𝐽 ∈ Top ∧ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))

Proof of Theorem neificl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 767 . . 3 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ Fin)
2 innei 22257 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
323expib 1120 . . . . . . 7 (𝐽 ∈ Top → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑦 ∈ ((nei‘𝐽)‘𝑆)) → (𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆)))
43ralrimivv 3115 . . . . . 6 (𝐽 ∈ Top → ∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆))
5 fiint 9052 . . . . . 6 (∀𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦 ∈ ((nei‘𝐽)‘𝑆)(𝑥𝑦) ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)))
64, 5sylib 217 . . . . 5 (𝐽 ∈ Top → ∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)))
7 sseq1 3950 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ⊆ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)))
8 neeq1 3007 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ≠ ∅ ↔ 𝑁 ≠ ∅))
9 eleq1 2827 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 ∈ Fin ↔ 𝑁 ∈ Fin))
107, 8, 93anbi123d 1434 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin)))
11 3ancomb 1097 . . . . . . . . 9 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
12 3anass 1093 . . . . . . . . 9 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1311, 12bitri 274 . . . . . . . 8 ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1410, 13bitrdi 286 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) ↔ (𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))))
15 inteq 4887 . . . . . . . 8 (𝑥 = 𝑁 𝑥 = 𝑁)
1615eleq1d 2824 . . . . . . 7 (𝑥 = 𝑁 → ( 𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
1714, 16imbi12d 344 . . . . . 6 (𝑥 = 𝑁 → (((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) ↔ ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
1817spcgv 3533 . . . . 5 (𝑁 ∈ Fin → (∀𝑥((𝑥 ⊆ ((nei‘𝐽)‘𝑆) ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
196, 18syl5 34 . . . 4 (𝑁 ∈ Fin → (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
2019com3l 89 . . 3 (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → (𝑁 ∈ Fin → 𝑁 ∈ ((nei‘𝐽)‘𝑆))))
211, 20mpdi 45 . 2 (𝐽 ∈ Top → ((𝑁 ⊆ ((nei‘𝐽)‘𝑆) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)))
2221impl 455 1 (((𝐽 ∈ Top ∧ 𝑁 ⊆ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wal 1539   = wceq 1541  wcel 2109  wne 2944  wral 3065  cin 3890  wss 3891  c0 4261   cint 4884  cfv 6430  Fincfn 8707  Topctop 22023  neicnei 22229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-om 7701  df-1o 8281  df-er 8472  df-en 8708  df-fin 8711  df-top 22024  df-nei 22230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator