Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem18 Structured version   Visualization version   GIF version

Theorem poimirlem18 36598
Description: Lemma for poimir 36613 stating that, given a face not on a front face of the main cube and a simplex in which it's opposite the first vertex on the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (πœ‘ β†’ 𝑁 ∈ β„•)
poimirlem22.s 𝑆 = {𝑑 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))}
poimirlem22.1 (πœ‘ β†’ 𝐹:(0...(𝑁 βˆ’ 1))⟢((0...𝐾) ↑m (1...𝑁)))
poimirlem22.2 (πœ‘ β†’ 𝑇 ∈ 𝑆)
poimirlem18.3 ((πœ‘ ∧ 𝑛 ∈ (1...𝑁)) β†’ βˆƒπ‘ ∈ ran 𝐹(π‘β€˜π‘›) β‰  𝐾)
poimirlem18.4 (πœ‘ β†’ (2nd β€˜π‘‡) = 0)
Assertion
Ref Expression
poimirlem18 (πœ‘ β†’ βˆƒ!𝑧 ∈ 𝑆 𝑧 β‰  𝑇)
Distinct variable groups:   𝑓,𝑗,𝑛,𝑝,𝑑,𝑦,𝑧   πœ‘,𝑗,𝑛,𝑦   𝑗,𝐹,𝑛,𝑦   𝑗,𝑁,𝑛,𝑦   𝑇,𝑗,𝑛,𝑦   πœ‘,𝑝,𝑑   𝑓,𝐾,𝑗,𝑛,𝑝,𝑑   𝑓,𝑁,𝑝,𝑑   𝑇,𝑓,𝑝   πœ‘,𝑧   𝑓,𝐹,𝑝,𝑑,𝑧   𝑧,𝐾   𝑧,𝑁   𝑑,𝑇,𝑧   𝑆,𝑗,𝑛,𝑝,𝑑,𝑦,𝑧
Allowed substitution hints:   πœ‘(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem18
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . 3 (πœ‘ β†’ 𝑁 ∈ β„•)
2 poimirlem22.s . . 3 𝑆 = {𝑑 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))}
3 poimirlem22.1 . . 3 (πœ‘ β†’ 𝐹:(0...(𝑁 βˆ’ 1))⟢((0...𝐾) ↑m (1...𝑁)))
4 poimirlem22.2 . . 3 (πœ‘ β†’ 𝑇 ∈ 𝑆)
5 poimirlem18.3 . . 3 ((πœ‘ ∧ 𝑛 ∈ (1...𝑁)) β†’ βˆƒπ‘ ∈ ran 𝐹(π‘β€˜π‘›) β‰  𝐾)
6 poimirlem18.4 . . 3 (πœ‘ β†’ (2nd β€˜π‘‡) = 0)
71, 2, 3, 4, 5, 6poimirlem17 36597 . 2 (πœ‘ β†’ βˆƒπ‘§ ∈ 𝑆 𝑧 β‰  𝑇)
86adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝑧 ∈ 𝑆) β†’ (2nd β€˜π‘‡) = 0)
9 0nnn 12250 . . . . . . . . . . . . 13 Β¬ 0 ∈ β„•
10 elfznn 13532 . . . . . . . . . . . . 13 (0 ∈ (1...(𝑁 βˆ’ 1)) β†’ 0 ∈ β„•)
119, 10mto 196 . . . . . . . . . . . 12 Β¬ 0 ∈ (1...(𝑁 βˆ’ 1))
12 eleq1 2821 . . . . . . . . . . . 12 ((2nd β€˜π‘§) = 0 β†’ ((2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ↔ 0 ∈ (1...(𝑁 βˆ’ 1))))
1311, 12mtbiri 326 . . . . . . . . . . 11 ((2nd β€˜π‘§) = 0 β†’ Β¬ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)))
1413necon2ai 2970 . . . . . . . . . 10 ((2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) β†’ (2nd β€˜π‘§) β‰  0)
151ad2antrr 724 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) β†’ 𝑁 ∈ β„•)
16 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑧 β†’ (2nd β€˜π‘‘) = (2nd β€˜π‘§))
1716breq2d 5160 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 = 𝑧 β†’ (𝑦 < (2nd β€˜π‘‘) ↔ 𝑦 < (2nd β€˜π‘§)))
1817ifbid 4551 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑧 β†’ if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)))
1918csbeq1d 3897 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑧 β†’ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
20 2fveq3 6896 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 = 𝑧 β†’ (1st β€˜(1st β€˜π‘‘)) = (1st β€˜(1st β€˜π‘§)))
21 2fveq3 6896 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 = 𝑧 β†’ (2nd β€˜(1st β€˜π‘‘)) = (2nd β€˜(1st β€˜π‘§)))
2221imaeq1d 6058 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = 𝑧 β†’ ((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) = ((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)))
2322xpeq1d 5705 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑧 β†’ (((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) = (((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}))
2421imaeq1d 6058 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = 𝑧 β†’ ((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) = ((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)))
2524xpeq1d 5705 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑧 β†’ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}) = (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))
2623, 25uneq12d 4164 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 = 𝑧 β†’ ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})) = ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))
2720, 26oveq12d 7429 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑧 β†’ ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
2827csbeq2dv 3900 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑧 β†’ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
2919, 28eqtrd 2772 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑧 β†’ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
3029mpteq2dv 5250 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑧 β†’ (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))) = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
3130eqeq2d 2743 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑧 β†’ (𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))))
3231, 2elrab2 3686 . . . . . . . . . . . . . . . 16 (𝑧 ∈ 𝑆 ↔ (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))))
3332simprbi 497 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝑆 β†’ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
3433ad2antlr 725 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) β†’ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘§), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘§)) ∘f + ((((2nd β€˜(1st β€˜π‘§)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘§)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
35 elrabi 3677 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝑑 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))} β†’ 𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)))
3635, 2eleq2s 2851 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ 𝑆 β†’ 𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)))
37 xp1st 8009 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) β†’ (1st β€˜π‘§) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}))
3836, 37syl 17 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ 𝑆 β†’ (1st β€˜π‘§) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}))
39 xp1st 8009 . . . . . . . . . . . . . . . . . 18 ((1st β€˜π‘§) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) β†’ (1st β€˜(1st β€˜π‘§)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
4038, 39syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ 𝑆 β†’ (1st β€˜(1st β€˜π‘§)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
41 elmapi 8845 . . . . . . . . . . . . . . . . 17 ((1st β€˜(1st β€˜π‘§)) ∈ ((0..^𝐾) ↑m (1...𝑁)) β†’ (1st β€˜(1st β€˜π‘§)):(1...𝑁)⟢(0..^𝐾))
4240, 41syl 17 . . . . . . . . . . . . . . . 16 (𝑧 ∈ 𝑆 β†’ (1st β€˜(1st β€˜π‘§)):(1...𝑁)⟢(0..^𝐾))
43 elfzoelz 13634 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝐾) β†’ 𝑛 ∈ β„€)
4443ssriv 3986 . . . . . . . . . . . . . . . 16 (0..^𝐾) βŠ† β„€
45 fss 6734 . . . . . . . . . . . . . . . 16 (((1st β€˜(1st β€˜π‘§)):(1...𝑁)⟢(0..^𝐾) ∧ (0..^𝐾) βŠ† β„€) β†’ (1st β€˜(1st β€˜π‘§)):(1...𝑁)βŸΆβ„€)
4642, 44, 45sylancl 586 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝑆 β†’ (1st β€˜(1st β€˜π‘§)):(1...𝑁)βŸΆβ„€)
4746ad2antlr 725 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) β†’ (1st β€˜(1st β€˜π‘§)):(1...𝑁)βŸΆβ„€)
48 xp2nd 8010 . . . . . . . . . . . . . . . . 17 ((1st β€˜π‘§) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) β†’ (2nd β€˜(1st β€˜π‘§)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)})
4938, 48syl 17 . . . . . . . . . . . . . . . 16 (𝑧 ∈ 𝑆 β†’ (2nd β€˜(1st β€˜π‘§)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)})
50 fvex 6904 . . . . . . . . . . . . . . . . 17 (2nd β€˜(1st β€˜π‘§)) ∈ V
51 f1oeq1 6821 . . . . . . . . . . . . . . . . 17 (𝑓 = (2nd β€˜(1st β€˜π‘§)) β†’ (𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁) ↔ (2nd β€˜(1st β€˜π‘§)):(1...𝑁)–1-1-ontoβ†’(1...𝑁)))
5250, 51elab 3668 . . . . . . . . . . . . . . . 16 ((2nd β€˜(1st β€˜π‘§)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)} ↔ (2nd β€˜(1st β€˜π‘§)):(1...𝑁)–1-1-ontoβ†’(1...𝑁))
5349, 52sylib 217 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝑆 β†’ (2nd β€˜(1st β€˜π‘§)):(1...𝑁)–1-1-ontoβ†’(1...𝑁))
5453ad2antlr 725 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) β†’ (2nd β€˜(1st β€˜π‘§)):(1...𝑁)–1-1-ontoβ†’(1...𝑁))
55 simpr 485 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) β†’ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)))
5615, 34, 47, 54, 55poimirlem1 36581 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) β†’ Β¬ βˆƒ*𝑛 ∈ (1...𝑁)((πΉβ€˜((2nd β€˜π‘§) βˆ’ 1))β€˜π‘›) β‰  ((πΉβ€˜(2nd β€˜π‘§))β€˜π‘›))
571ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ (2nd β€˜π‘‡) β‰  (2nd β€˜π‘§)) β†’ 𝑁 ∈ β„•)
58 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑 = 𝑇 β†’ (2nd β€˜π‘‘) = (2nd β€˜π‘‡))
5958breq2d 5160 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 = 𝑇 β†’ (𝑦 < (2nd β€˜π‘‘) ↔ 𝑦 < (2nd β€˜π‘‡)))
6059ifbid 4551 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 = 𝑇 β†’ if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)))
6160csbeq1d 3897 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = 𝑇 β†’ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
62 2fveq3 6896 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 = 𝑇 β†’ (1st β€˜(1st β€˜π‘‘)) = (1st β€˜(1st β€˜π‘‡)))
63 2fveq3 6896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑 = 𝑇 β†’ (2nd β€˜(1st β€˜π‘‘)) = (2nd β€˜(1st β€˜π‘‡)))
6463imaeq1d 6058 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑑 = 𝑇 β†’ ((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) = ((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)))
6564xpeq1d 5705 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑 = 𝑇 β†’ (((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) = (((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}))
6663imaeq1d 6058 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑑 = 𝑇 β†’ ((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) = ((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)))
6766xpeq1d 5705 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑 = 𝑇 β†’ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}) = (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))
6865, 67uneq12d 4164 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 = 𝑇 β†’ ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})) = ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))
6962, 68oveq12d 7429 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 = 𝑇 β†’ ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
7069csbeq2dv 3900 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 = 𝑇 β†’ ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
7161, 70eqtrd 2772 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑇 β†’ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))) = ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))
7271mpteq2dv 5250 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 = 𝑇 β†’ (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))) = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
7372eqeq2d 2743 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑇 β†’ (𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))))
7473, 2elrab2 3686 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ 𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))))
7574simprbi 497 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ 𝑆 β†’ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
764, 75syl 17 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
7776ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ (2nd β€˜π‘‡) β‰  (2nd β€˜π‘§)) β†’ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‡), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‡)) ∘f + ((((2nd β€˜(1st β€˜π‘‡)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‡)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0})))))
78 elrabi 3677 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑇 ∈ {𝑑 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 βˆ’ 1)) ↦ ⦋if(𝑦 < (2nd β€˜π‘‘), 𝑦, (𝑦 + 1)) / π‘—β¦Œ((1st β€˜(1st β€˜π‘‘)) ∘f + ((((2nd β€˜(1st β€˜π‘‘)) β€œ (1...𝑗)) Γ— {1}) βˆͺ (((2nd β€˜(1st β€˜π‘‘)) β€œ ((𝑗 + 1)...𝑁)) Γ— {0}))))} β†’ 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)))
7978, 2eleq2s 2851 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑇 ∈ 𝑆 β†’ 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)))
804, 79syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (πœ‘ β†’ 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)))
81 xp1st 8009 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) β†’ (1st β€˜π‘‡) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}))
8280, 81syl 17 . . . . . . . . . . . . . . . . . . . . 21 (πœ‘ β†’ (1st β€˜π‘‡) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}))
83 xp1st 8009 . . . . . . . . . . . . . . . . . . . . 21 ((1st β€˜π‘‡) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) β†’ (1st β€˜(1st β€˜π‘‡)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
8482, 83syl 17 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ (1st β€˜(1st β€˜π‘‡)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
85 elmapi 8845 . . . . . . . . . . . . . . . . . . . 20 ((1st β€˜(1st β€˜π‘‡)) ∈ ((0..^𝐾) ↑m (1...𝑁)) β†’ (1st β€˜(1st β€˜π‘‡)):(1...𝑁)⟢(0..^𝐾))
8684, 85syl 17 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ (1st β€˜(1st β€˜π‘‡)):(1...𝑁)⟢(0..^𝐾))
87 fss 6734 . . . . . . . . . . . . . . . . . . 19 (((1st β€˜(1st β€˜π‘‡)):(1...𝑁)⟢(0..^𝐾) ∧ (0..^𝐾) βŠ† β„€) β†’ (1st β€˜(1st β€˜π‘‡)):(1...𝑁)βŸΆβ„€)
8886, 44, 87sylancl 586 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (1st β€˜(1st β€˜π‘‡)):(1...𝑁)βŸΆβ„€)
8988ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ (2nd β€˜π‘‡) β‰  (2nd β€˜π‘§)) β†’ (1st β€˜(1st β€˜π‘‡)):(1...𝑁)βŸΆβ„€)
90 xp2nd 8010 . . . . . . . . . . . . . . . . . . . 20 ((1st β€˜π‘‡) ∈ (((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) β†’ (2nd β€˜(1st β€˜π‘‡)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)})
9182, 90syl 17 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ (2nd β€˜(1st β€˜π‘‡)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)})
92 fvex 6904 . . . . . . . . . . . . . . . . . . . 20 (2nd β€˜(1st β€˜π‘‡)) ∈ V
93 f1oeq1 6821 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (2nd β€˜(1st β€˜π‘‡)) β†’ (𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁) ↔ (2nd β€˜(1st β€˜π‘‡)):(1...𝑁)–1-1-ontoβ†’(1...𝑁)))
9492, 93elab 3668 . . . . . . . . . . . . . . . . . . 19 ((2nd β€˜(1st β€˜π‘‡)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)} ↔ (2nd β€˜(1st β€˜π‘‡)):(1...𝑁)–1-1-ontoβ†’(1...𝑁))
9591, 94sylib 217 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (2nd β€˜(1st β€˜π‘‡)):(1...𝑁)–1-1-ontoβ†’(1...𝑁))
9695ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ (2nd β€˜π‘‡) β‰  (2nd β€˜π‘§)) β†’ (2nd β€˜(1st β€˜π‘‡)):(1...𝑁)–1-1-ontoβ†’(1...𝑁))
97 simplr 767 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ (2nd β€˜π‘‡) β‰  (2nd β€˜π‘§)) β†’ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)))
98 xp2nd 8010 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) β†’ (2nd β€˜π‘‡) ∈ (0...𝑁))
9980, 98syl 17 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ (2nd β€˜π‘‡) ∈ (0...𝑁))
10099adantr 481 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) β†’ (2nd β€˜π‘‡) ∈ (0...𝑁))
101 eldifsn 4790 . . . . . . . . . . . . . . . . . . 19 ((2nd β€˜π‘‡) ∈ ((0...𝑁) βˆ– {(2nd β€˜π‘§)}) ↔ ((2nd β€˜π‘‡) ∈ (0...𝑁) ∧ (2nd β€˜π‘‡) β‰  (2nd β€˜π‘§)))
102101biimpri 227 . . . . . . . . . . . . . . . . . 18 (((2nd β€˜π‘‡) ∈ (0...𝑁) ∧ (2nd β€˜π‘‡) β‰  (2nd β€˜π‘§)) β†’ (2nd β€˜π‘‡) ∈ ((0...𝑁) βˆ– {(2nd β€˜π‘§)}))
103100, 102sylan 580 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ (2nd β€˜π‘‡) β‰  (2nd β€˜π‘§)) β†’ (2nd β€˜π‘‡) ∈ ((0...𝑁) βˆ– {(2nd β€˜π‘§)}))
10457, 77, 89, 96, 97, 103poimirlem2 36582 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) ∧ (2nd β€˜π‘‡) β‰  (2nd β€˜π‘§)) β†’ βˆƒ*𝑛 ∈ (1...𝑁)((πΉβ€˜((2nd β€˜π‘§) βˆ’ 1))β€˜π‘›) β‰  ((πΉβ€˜(2nd β€˜π‘§))β€˜π‘›))
105104ex 413 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) β†’ ((2nd β€˜π‘‡) β‰  (2nd β€˜π‘§) β†’ βˆƒ*𝑛 ∈ (1...𝑁)((πΉβ€˜((2nd β€˜π‘§) βˆ’ 1))β€˜π‘›) β‰  ((πΉβ€˜(2nd β€˜π‘§))β€˜π‘›)))
106105necon1bd 2958 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) β†’ (Β¬ βˆƒ*𝑛 ∈ (1...𝑁)((πΉβ€˜((2nd β€˜π‘§) βˆ’ 1))β€˜π‘›) β‰  ((πΉβ€˜(2nd β€˜π‘§))β€˜π‘›) β†’ (2nd β€˜π‘‡) = (2nd β€˜π‘§)))
107106adantlr 713 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) β†’ (Β¬ βˆƒ*𝑛 ∈ (1...𝑁)((πΉβ€˜((2nd β€˜π‘§) βˆ’ 1))β€˜π‘›) β‰  ((πΉβ€˜(2nd β€˜π‘§))β€˜π‘›) β†’ (2nd β€˜π‘‡) = (2nd β€˜π‘§)))
10856, 107mpd 15 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) β†’ (2nd β€˜π‘‡) = (2nd β€˜π‘§))
109108neeq1d 3000 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑧 ∈ 𝑆) ∧ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))) β†’ ((2nd β€˜π‘‡) β‰  0 ↔ (2nd β€˜π‘§) β‰  0))
110109exbiri 809 . . . . . . . . . 10 ((πœ‘ ∧ 𝑧 ∈ 𝑆) β†’ ((2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) β†’ ((2nd β€˜π‘§) β‰  0 β†’ (2nd β€˜π‘‡) β‰  0)))
11114, 110mpdi 45 . . . . . . . . 9 ((πœ‘ ∧ 𝑧 ∈ 𝑆) β†’ ((2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) β†’ (2nd β€˜π‘‡) β‰  0))
112111necon2bd 2956 . . . . . . . 8 ((πœ‘ ∧ 𝑧 ∈ 𝑆) β†’ ((2nd β€˜π‘‡) = 0 β†’ Β¬ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1))))
1138, 112mpd 15 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ 𝑆) β†’ Β¬ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)))
114 xp2nd 8010 . . . . . . . . 9 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) Γ— {𝑓 ∣ 𝑓:(1...𝑁)–1-1-ontoβ†’(1...𝑁)}) Γ— (0...𝑁)) β†’ (2nd β€˜π‘§) ∈ (0...𝑁))
11536, 114syl 17 . . . . . . . 8 (𝑧 ∈ 𝑆 β†’ (2nd β€˜π‘§) ∈ (0...𝑁))
1161nncnd 12230 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ 𝑁 ∈ β„‚)
117 npcan1 11641 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ β„‚ β†’ ((𝑁 βˆ’ 1) + 1) = 𝑁)
118116, 117syl 17 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ ((𝑁 βˆ’ 1) + 1) = 𝑁)
119 nnuz 12867 . . . . . . . . . . . . . . . . . . 19 β„• = (β„€β‰₯β€˜1)
1201, 119eleqtrdi 2843 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜1))
121118, 120eqeltrd 2833 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ ((𝑁 βˆ’ 1) + 1) ∈ (β„€β‰₯β€˜1))
1221nnzd 12587 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ 𝑁 ∈ β„€)
123 peano2zm 12607 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„€ β†’ (𝑁 βˆ’ 1) ∈ β„€)
124122, 123syl 17 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ (𝑁 βˆ’ 1) ∈ β„€)
125 uzid 12839 . . . . . . . . . . . . . . . . . . 19 ((𝑁 βˆ’ 1) ∈ β„€ β†’ (𝑁 βˆ’ 1) ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
126 peano2uz 12887 . . . . . . . . . . . . . . . . . . 19 ((𝑁 βˆ’ 1) ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)) β†’ ((𝑁 βˆ’ 1) + 1) ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
127124, 125, 1263syl 18 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ ((𝑁 βˆ’ 1) + 1) ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
128118, 127eqeltrrd 2834 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
129 fzsplit2 13528 . . . . . . . . . . . . . . . . 17 ((((𝑁 βˆ’ 1) + 1) ∈ (β„€β‰₯β€˜1) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1))) β†’ (1...𝑁) = ((1...(𝑁 βˆ’ 1)) βˆͺ (((𝑁 βˆ’ 1) + 1)...𝑁)))
130121, 128, 129syl2anc 584 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (1...𝑁) = ((1...(𝑁 βˆ’ 1)) βˆͺ (((𝑁 βˆ’ 1) + 1)...𝑁)))
131118oveq1d 7426 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (((𝑁 βˆ’ 1) + 1)...𝑁) = (𝑁...𝑁))
132 fzsn 13545 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ β„€ β†’ (𝑁...𝑁) = {𝑁})
133122, 132syl 17 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (𝑁...𝑁) = {𝑁})
134131, 133eqtrd 2772 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (((𝑁 βˆ’ 1) + 1)...𝑁) = {𝑁})
135134uneq2d 4163 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ ((1...(𝑁 βˆ’ 1)) βˆͺ (((𝑁 βˆ’ 1) + 1)...𝑁)) = ((1...(𝑁 βˆ’ 1)) βˆͺ {𝑁}))
136130, 135eqtrd 2772 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (1...𝑁) = ((1...(𝑁 βˆ’ 1)) βˆͺ {𝑁}))
137136eleq2d 2819 . . . . . . . . . . . . . 14 (πœ‘ β†’ ((2nd β€˜π‘§) ∈ (1...𝑁) ↔ (2nd β€˜π‘§) ∈ ((1...(𝑁 βˆ’ 1)) βˆͺ {𝑁})))
138137notbid 317 . . . . . . . . . . . . 13 (πœ‘ β†’ (Β¬ (2nd β€˜π‘§) ∈ (1...𝑁) ↔ Β¬ (2nd β€˜π‘§) ∈ ((1...(𝑁 βˆ’ 1)) βˆͺ {𝑁})))
139 ioran 982 . . . . . . . . . . . . . 14 (Β¬ ((2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ∨ (2nd β€˜π‘§) = 𝑁) ↔ (Β¬ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ∧ Β¬ (2nd β€˜π‘§) = 𝑁))
140 elun 4148 . . . . . . . . . . . . . . 15 ((2nd β€˜π‘§) ∈ ((1...(𝑁 βˆ’ 1)) βˆͺ {𝑁}) ↔ ((2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ∨ (2nd β€˜π‘§) ∈ {𝑁}))
141 fvex 6904 . . . . . . . . . . . . . . . . 17 (2nd β€˜π‘§) ∈ V
142141elsn 4643 . . . . . . . . . . . . . . . 16 ((2nd β€˜π‘§) ∈ {𝑁} ↔ (2nd β€˜π‘§) = 𝑁)
143142orbi2i 911 . . . . . . . . . . . . . . 15 (((2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ∨ (2nd β€˜π‘§) ∈ {𝑁}) ↔ ((2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ∨ (2nd β€˜π‘§) = 𝑁))
144140, 143bitri 274 . . . . . . . . . . . . . 14 ((2nd β€˜π‘§) ∈ ((1...(𝑁 βˆ’ 1)) βˆͺ {𝑁}) ↔ ((2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ∨ (2nd β€˜π‘§) = 𝑁))
145139, 144xchnxbir 332 . . . . . . . . . . . . 13 (Β¬ (2nd β€˜π‘§) ∈ ((1...(𝑁 βˆ’ 1)) βˆͺ {𝑁}) ↔ (Β¬ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ∧ Β¬ (2nd β€˜π‘§) = 𝑁))
146138, 145bitrdi 286 . . . . . . . . . . . 12 (πœ‘ β†’ (Β¬ (2nd β€˜π‘§) ∈ (1...𝑁) ↔ (Β¬ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ∧ Β¬ (2nd β€˜π‘§) = 𝑁)))
147146anbi2d 629 . . . . . . . . . . 11 (πœ‘ β†’ (((2nd β€˜π‘§) ∈ (0...𝑁) ∧ Β¬ (2nd β€˜π‘§) ∈ (1...𝑁)) ↔ ((2nd β€˜π‘§) ∈ (0...𝑁) ∧ (Β¬ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ∧ Β¬ (2nd β€˜π‘§) = 𝑁))))
1481nnnn0d 12534 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝑁 ∈ β„•0)
149 nn0uz 12866 . . . . . . . . . . . . . . . . 17 β„•0 = (β„€β‰₯β€˜0)
150148, 149eleqtrdi 2843 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜0))
151 fzpred 13551 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (β„€β‰₯β€˜0) β†’ (0...𝑁) = ({0} βˆͺ ((0 + 1)...𝑁)))
152150, 151syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (0...𝑁) = ({0} βˆͺ ((0 + 1)...𝑁)))
153152difeq1d 4121 . . . . . . . . . . . . . 14 (πœ‘ β†’ ((0...𝑁) βˆ– (1...𝑁)) = (({0} βˆͺ ((0 + 1)...𝑁)) βˆ– (1...𝑁)))
154 difun2 4480 . . . . . . . . . . . . . . 15 (({0} βˆͺ (1...𝑁)) βˆ– (1...𝑁)) = ({0} βˆ– (1...𝑁))
155 0p1e1 12336 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
156155oveq1i 7421 . . . . . . . . . . . . . . . . 17 ((0 + 1)...𝑁) = (1...𝑁)
157156uneq2i 4160 . . . . . . . . . . . . . . . 16 ({0} βˆͺ ((0 + 1)...𝑁)) = ({0} βˆͺ (1...𝑁))
158157difeq1i 4118 . . . . . . . . . . . . . . 15 (({0} βˆͺ ((0 + 1)...𝑁)) βˆ– (1...𝑁)) = (({0} βˆͺ (1...𝑁)) βˆ– (1...𝑁))
159 incom 4201 . . . . . . . . . . . . . . . . 17 ({0} ∩ (1...𝑁)) = ((1...𝑁) ∩ {0})
160 elfznn 13532 . . . . . . . . . . . . . . . . . . 19 (0 ∈ (1...𝑁) β†’ 0 ∈ β„•)
1619, 160mto 196 . . . . . . . . . . . . . . . . . 18 Β¬ 0 ∈ (1...𝑁)
162 disjsn 4715 . . . . . . . . . . . . . . . . . 18 (((1...𝑁) ∩ {0}) = βˆ… ↔ Β¬ 0 ∈ (1...𝑁))
163161, 162mpbir 230 . . . . . . . . . . . . . . . . 17 ((1...𝑁) ∩ {0}) = βˆ…
164159, 163eqtri 2760 . . . . . . . . . . . . . . . 16 ({0} ∩ (1...𝑁)) = βˆ…
165 disj3 4453 . . . . . . . . . . . . . . . 16 (({0} ∩ (1...𝑁)) = βˆ… ↔ {0} = ({0} βˆ– (1...𝑁)))
166164, 165mpbi 229 . . . . . . . . . . . . . . 15 {0} = ({0} βˆ– (1...𝑁))
167154, 158, 1663eqtr4i 2770 . . . . . . . . . . . . . 14 (({0} βˆͺ ((0 + 1)...𝑁)) βˆ– (1...𝑁)) = {0}
168153, 167eqtrdi 2788 . . . . . . . . . . . . 13 (πœ‘ β†’ ((0...𝑁) βˆ– (1...𝑁)) = {0})
169168eleq2d 2819 . . . . . . . . . . . 12 (πœ‘ β†’ ((2nd β€˜π‘§) ∈ ((0...𝑁) βˆ– (1...𝑁)) ↔ (2nd β€˜π‘§) ∈ {0}))
170 eldif 3958 . . . . . . . . . . . 12 ((2nd β€˜π‘§) ∈ ((0...𝑁) βˆ– (1...𝑁)) ↔ ((2nd β€˜π‘§) ∈ (0...𝑁) ∧ Β¬ (2nd β€˜π‘§) ∈ (1...𝑁)))
171141elsn 4643 . . . . . . . . . . . 12 ((2nd β€˜π‘§) ∈ {0} ↔ (2nd β€˜π‘§) = 0)
172169, 170, 1713bitr3g 312 . . . . . . . . . . 11 (πœ‘ β†’ (((2nd β€˜π‘§) ∈ (0...𝑁) ∧ Β¬ (2nd β€˜π‘§) ∈ (1...𝑁)) ↔ (2nd β€˜π‘§) = 0))
173147, 172bitr3d 280 . . . . . . . . . 10 (πœ‘ β†’ (((2nd β€˜π‘§) ∈ (0...𝑁) ∧ (Β¬ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ∧ Β¬ (2nd β€˜π‘§) = 𝑁)) ↔ (2nd β€˜π‘§) = 0))
174173biimpd 228 . . . . . . . . 9 (πœ‘ β†’ (((2nd β€˜π‘§) ∈ (0...𝑁) ∧ (Β¬ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ∧ Β¬ (2nd β€˜π‘§) = 𝑁)) β†’ (2nd β€˜π‘§) = 0))
175174expdimp 453 . . . . . . . 8 ((πœ‘ ∧ (2nd β€˜π‘§) ∈ (0...𝑁)) β†’ ((Β¬ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ∧ Β¬ (2nd β€˜π‘§) = 𝑁) β†’ (2nd β€˜π‘§) = 0))
176115, 175sylan2 593 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ 𝑆) β†’ ((Β¬ (2nd β€˜π‘§) ∈ (1...(𝑁 βˆ’ 1)) ∧ Β¬ (2nd β€˜π‘§) = 𝑁) β†’ (2nd β€˜π‘§) = 0))
177113, 176mpand 693 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ 𝑆) β†’ (Β¬ (2nd β€˜π‘§) = 𝑁 β†’ (2nd β€˜π‘§) = 0))
1781, 2, 3poimirlem13 36593 . . . . . . . . . 10 (πœ‘ β†’ βˆƒ*𝑧 ∈ 𝑆 (2nd β€˜π‘§) = 0)
179 fveqeq2 6900 . . . . . . . . . . 11 (𝑧 = 𝑠 β†’ ((2nd β€˜π‘§) = 0 ↔ (2nd β€˜π‘ ) = 0))
180179rmo4 3726 . . . . . . . . . 10 (βˆƒ*𝑧 ∈ 𝑆 (2nd β€˜π‘§) = 0 ↔ βˆ€π‘§ ∈ 𝑆 βˆ€π‘  ∈ 𝑆 (((2nd β€˜π‘§) = 0 ∧ (2nd β€˜π‘ ) = 0) β†’ 𝑧 = 𝑠))
181178, 180sylib 217 . . . . . . . . 9 (πœ‘ β†’ βˆ€π‘§ ∈ 𝑆 βˆ€π‘  ∈ 𝑆 (((2nd β€˜π‘§) = 0 ∧ (2nd β€˜π‘ ) = 0) β†’ 𝑧 = 𝑠))
182181r19.21bi 3248 . . . . . . . 8 ((πœ‘ ∧ 𝑧 ∈ 𝑆) β†’ βˆ€π‘  ∈ 𝑆 (((2nd β€˜π‘§) = 0 ∧ (2nd β€˜π‘ ) = 0) β†’ 𝑧 = 𝑠))
1834adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝑧 ∈ 𝑆) β†’ 𝑇 ∈ 𝑆)
184 fveqeq2 6900 . . . . . . . . . . 11 (𝑠 = 𝑇 β†’ ((2nd β€˜π‘ ) = 0 ↔ (2nd β€˜π‘‡) = 0))
185184anbi2d 629 . . . . . . . . . 10 (𝑠 = 𝑇 β†’ (((2nd β€˜π‘§) = 0 ∧ (2nd β€˜π‘ ) = 0) ↔ ((2nd β€˜π‘§) = 0 ∧ (2nd β€˜π‘‡) = 0)))
186 eqeq2 2744 . . . . . . . . . 10 (𝑠 = 𝑇 β†’ (𝑧 = 𝑠 ↔ 𝑧 = 𝑇))
187185, 186imbi12d 344 . . . . . . . . 9 (𝑠 = 𝑇 β†’ ((((2nd β€˜π‘§) = 0 ∧ (2nd β€˜π‘ ) = 0) β†’ 𝑧 = 𝑠) ↔ (((2nd β€˜π‘§) = 0 ∧ (2nd β€˜π‘‡) = 0) β†’ 𝑧 = 𝑇)))
188187rspccv 3609 . . . . . . . 8 (βˆ€π‘  ∈ 𝑆 (((2nd β€˜π‘§) = 0 ∧ (2nd β€˜π‘ ) = 0) β†’ 𝑧 = 𝑠) β†’ (𝑇 ∈ 𝑆 β†’ (((2nd β€˜π‘§) = 0 ∧ (2nd β€˜π‘‡) = 0) β†’ 𝑧 = 𝑇)))
189182, 183, 188sylc 65 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ 𝑆) β†’ (((2nd β€˜π‘§) = 0 ∧ (2nd β€˜π‘‡) = 0) β†’ 𝑧 = 𝑇))
1908, 189mpan2d 692 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ 𝑆) β†’ ((2nd β€˜π‘§) = 0 β†’ 𝑧 = 𝑇))
191177, 190syld 47 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ 𝑆) β†’ (Β¬ (2nd β€˜π‘§) = 𝑁 β†’ 𝑧 = 𝑇))
192191necon1ad 2957 . . . 4 ((πœ‘ ∧ 𝑧 ∈ 𝑆) β†’ (𝑧 β‰  𝑇 β†’ (2nd β€˜π‘§) = 𝑁))
193192ralrimiva 3146 . . 3 (πœ‘ β†’ βˆ€π‘§ ∈ 𝑆 (𝑧 β‰  𝑇 β†’ (2nd β€˜π‘§) = 𝑁))
1941, 2, 3poimirlem14 36594 . . 3 (πœ‘ β†’ βˆƒ*𝑧 ∈ 𝑆 (2nd β€˜π‘§) = 𝑁)
195 rmoim 3736 . . 3 (βˆ€π‘§ ∈ 𝑆 (𝑧 β‰  𝑇 β†’ (2nd β€˜π‘§) = 𝑁) β†’ (βˆƒ*𝑧 ∈ 𝑆 (2nd β€˜π‘§) = 𝑁 β†’ βˆƒ*𝑧 ∈ 𝑆 𝑧 β‰  𝑇))
196193, 194, 195sylc 65 . 2 (πœ‘ β†’ βˆƒ*𝑧 ∈ 𝑆 𝑧 β‰  𝑇)
197 reu5 3378 . 2 (βˆƒ!𝑧 ∈ 𝑆 𝑧 β‰  𝑇 ↔ (βˆƒπ‘§ ∈ 𝑆 𝑧 β‰  𝑇 ∧ βˆƒ*𝑧 ∈ 𝑆 𝑧 β‰  𝑇))
1987, 196, 197sylanbrc 583 1 (πœ‘ β†’ βˆƒ!𝑧 ∈ 𝑆 𝑧 β‰  𝑇)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106  {cab 2709   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  βˆƒ!wreu 3374  βˆƒ*wrmo 3375  {crab 3432  β¦‹csb 3893   βˆ– cdif 3945   βˆͺ cun 3946   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  ifcif 4528  {csn 4628   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5674  ran crn 5677   β€œ cima 5679  βŸΆwf 6539  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7411   ∘f cof 7670  1st c1st 7975  2nd c2nd 7976   ↑m cmap 8822  β„‚cc 11110  0cc0 11112  1c1 11113   + caddc 11115   < clt 11250   βˆ’ cmin 11446  β„•cn 12214  β„•0cn0 12474  β„€cz 12560  β„€β‰₯cuz 12824  ...cfz 13486  ..^cfzo 13629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-n0 12475  df-z 12561  df-uz 12825  df-fz 13487  df-fzo 13630
This theorem is referenced by:  poimirlem22  36602
  Copyright terms: Public domain W3C validator