MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks1 Structured version   Visualization version   GIF version

Theorem wlkiswwlks1 28232
Description: The sequence of vertices in a walk is a walk as word in a pseudograph. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 9-Apr-2021.)
Assertion
Ref Expression
wlkiswwlks1 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃𝑃 ∈ (WWalks‘𝐺)))

Proof of Theorem wlkiswwlks1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wlkn0 27988 . 2 (𝐹(Walks‘𝐺)𝑃𝑃 ≠ ∅)
2 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2738 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgriswlk 28008 . . 3 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
5 simpr 485 . . . . . 6 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ∧ 𝑃 ≠ ∅) → 𝑃 ≠ ∅)
6 ffz0iswrd 14244 . . . . . . . 8 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 ∈ Word (Vtx‘𝐺))
763ad2ant2 1133 . . . . . . 7 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → 𝑃 ∈ Word (Vtx‘𝐺))
87ad2antlr 724 . . . . . 6 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ∧ 𝑃 ≠ ∅) → 𝑃 ∈ Word (Vtx‘𝐺))
9 upgruhgr 27472 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
103uhgrfun 27436 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
11 funfn 6464 . . . . . . . . . . . . . . . . . . 19 (Fun (iEdg‘𝐺) ↔ (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
1211biimpi 215 . . . . . . . . . . . . . . . . . 18 (Fun (iEdg‘𝐺) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
139, 10, 123syl 18 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
1413ad2antlr 724 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
15 wrdsymbcl 14230 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) ∈ dom (iEdg‘𝐺))
1615ad4ant14 749 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) ∈ dom (iEdg‘𝐺))
17 fnfvelrn 6958 . . . . . . . . . . . . . . . 16 (((iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ (𝐹𝑖) ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(𝐹𝑖)) ∈ ran (iEdg‘𝐺))
1814, 16, 17syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹𝑖)) ∈ ran (iEdg‘𝐺))
19 edgval 27419 . . . . . . . . . . . . . . 15 (Edg‘𝐺) = ran (iEdg‘𝐺)
2018, 19eleqtrrdi 2850 . . . . . . . . . . . . . 14 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹𝑖)) ∈ (Edg‘𝐺))
21 eleq1 2826 . . . . . . . . . . . . . . 15 ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} = ((iEdg‘𝐺)‘(𝐹𝑖)) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ((iEdg‘𝐺)‘(𝐹𝑖)) ∈ (Edg‘𝐺)))
2221eqcoms 2746 . . . . . . . . . . . . . 14 (((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ((iEdg‘𝐺)‘(𝐹𝑖)) ∈ (Edg‘𝐺)))
2320, 22syl5ibrcom 246 . . . . . . . . . . . . 13 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2423ralimdva 3108 . . . . . . . . . . . 12 (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → (∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2524ex 413 . . . . . . . . . . 11 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝐺 ∈ UPGraph → (∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
2625com23 86 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → (𝐺 ∈ UPGraph → ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
27263impia 1116 . . . . . . . . 9 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝐺 ∈ UPGraph → ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2827impcom 408 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))
29 lencl 14236 . . . . . . . . . . . . . 14 (𝐹 ∈ Word dom (iEdg‘𝐺) → (♯‘𝐹) ∈ ℕ0)
30 ffz0hash 14159 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (♯‘𝑃) = ((♯‘𝐹) + 1))
3130ex 413 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (♯‘𝑃) = ((♯‘𝐹) + 1)))
32 oveq1 7282 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) = ((♯‘𝐹) + 1) → ((♯‘𝑃) − 1) = (((♯‘𝐹) + 1) − 1))
33 nn0cn 12243 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
34 pncan1 11399 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) ∈ ℂ → (((♯‘𝐹) + 1) − 1) = (♯‘𝐹))
3533, 34syl 17 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) ∈ ℕ0 → (((♯‘𝐹) + 1) − 1) = (♯‘𝐹))
3632, 35sylan9eqr 2800 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) → ((♯‘𝑃) − 1) = (♯‘𝐹))
3736ex 413 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝑃) = ((♯‘𝐹) + 1) → ((♯‘𝑃) − 1) = (♯‘𝐹)))
3831, 37syld 47 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝑃) − 1) = (♯‘𝐹)))
3929, 38syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝑃) − 1) = (♯‘𝐹)))
4039imp 407 . . . . . . . . . . . 12 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → ((♯‘𝑃) − 1) = (♯‘𝐹))
4140oveq2d 7291 . . . . . . . . . . 11 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (0..^((♯‘𝑃) − 1)) = (0..^(♯‘𝐹)))
4241raleqdv 3348 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
43423adant3 1131 . . . . . . . . 9 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4443adantl 482 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4528, 44mpbird 256 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))
4645adantr 481 . . . . . 6 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ∧ 𝑃 ≠ ∅) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))
47 eqid 2738 . . . . . . 7 (Edg‘𝐺) = (Edg‘𝐺)
482, 47iswwlks 28201 . . . . . 6 (𝑃 ∈ (WWalks‘𝐺) ↔ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
495, 8, 46, 48syl3anbrc 1342 . . . . 5 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ∧ 𝑃 ≠ ∅) → 𝑃 ∈ (WWalks‘𝐺))
5049ex 413 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → (𝑃 ≠ ∅ → 𝑃 ∈ (WWalks‘𝐺)))
5150ex 413 . . 3 (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝑃 ≠ ∅ → 𝑃 ∈ (WWalks‘𝐺))))
524, 51sylbid 239 . 2 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 → (𝑃 ≠ ∅ → 𝑃 ∈ (WWalks‘𝐺))))
531, 52mpdi 45 1 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃𝑃 ∈ (WWalks‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  c0 4256  {cpr 4563   class class class wbr 5074  dom cdm 5589  ran crn 5590  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874  cmin 11205  0cn0 12233  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  UHGraphcuhgr 27426  UPGraphcupgr 27450  Walkscwlks 27963  WWalkscwwlks 28190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-edg 27418  df-uhgr 27428  df-upgr 27452  df-wlks 27966  df-wwlks 28195
This theorem is referenced by:  wlklnwwlkln1  28233  wlkiswwlks  28241  wlkiswwlkupgr  28243  elwspths2spth  28332
  Copyright terms: Public domain W3C validator