MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks1 Structured version   Visualization version   GIF version

Theorem wlkiswwlks1 29812
Description: The sequence of vertices in a walk is a walk as word in a pseudograph. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 9-Apr-2021.)
Assertion
Ref Expression
wlkiswwlks1 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃𝑃 ∈ (WWalks‘𝐺)))

Proof of Theorem wlkiswwlks1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wlkn0 29566 . 2 (𝐹(Walks‘𝐺)𝑃𝑃 ≠ ∅)
2 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2729 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgriswlk 29586 . . 3 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
5 simpr 484 . . . . . 6 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ∧ 𝑃 ≠ ∅) → 𝑃 ≠ ∅)
6 ffz0iswrd 14448 . . . . . . . 8 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 ∈ Word (Vtx‘𝐺))
763ad2ant2 1134 . . . . . . 7 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → 𝑃 ∈ Word (Vtx‘𝐺))
87ad2antlr 727 . . . . . 6 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ∧ 𝑃 ≠ ∅) → 𝑃 ∈ Word (Vtx‘𝐺))
9 upgruhgr 29047 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
103uhgrfun 29011 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
11 funfn 6512 . . . . . . . . . . . . . . . . . . 19 (Fun (iEdg‘𝐺) ↔ (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
1211biimpi 216 . . . . . . . . . . . . . . . . . 18 (Fun (iEdg‘𝐺) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
139, 10, 123syl 18 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ UPGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
1413ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
15 wrdsymbcl 14434 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) ∈ dom (iEdg‘𝐺))
1615ad4ant14 752 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) ∈ dom (iEdg‘𝐺))
17 fnfvelrn 7014 . . . . . . . . . . . . . . . 16 (((iEdg‘𝐺) Fn dom (iEdg‘𝐺) ∧ (𝐹𝑖) ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(𝐹𝑖)) ∈ ran (iEdg‘𝐺))
1814, 16, 17syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹𝑖)) ∈ ran (iEdg‘𝐺))
19 edgval 28994 . . . . . . . . . . . . . . 15 (Edg‘𝐺) = ran (iEdg‘𝐺)
2018, 19eleqtrrdi 2839 . . . . . . . . . . . . . 14 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹𝑖)) ∈ (Edg‘𝐺))
21 eleq1 2816 . . . . . . . . . . . . . . 15 ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} = ((iEdg‘𝐺)‘(𝐹𝑖)) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ((iEdg‘𝐺)‘(𝐹𝑖)) ∈ (Edg‘𝐺)))
2221eqcoms 2737 . . . . . . . . . . . . . 14 (((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ((iEdg‘𝐺)‘(𝐹𝑖)) ∈ (Edg‘𝐺)))
2320, 22syl5ibrcom 247 . . . . . . . . . . . . 13 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2423ralimdva 3141 . . . . . . . . . . . 12 (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → (∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2524ex 412 . . . . . . . . . . 11 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝐺 ∈ UPGraph → (∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
2625com23 86 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → (𝐺 ∈ UPGraph → ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
27263impia 1117 . . . . . . . . 9 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝐺 ∈ UPGraph → ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2827impcom 407 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))
29 lencl 14440 . . . . . . . . . . . . . 14 (𝐹 ∈ Word dom (iEdg‘𝐺) → (♯‘𝐹) ∈ ℕ0)
30 ffz0hash 14354 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (♯‘𝑃) = ((♯‘𝐹) + 1))
3130ex 412 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (♯‘𝑃) = ((♯‘𝐹) + 1)))
32 oveq1 7356 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) = ((♯‘𝐹) + 1) → ((♯‘𝑃) − 1) = (((♯‘𝐹) + 1) − 1))
33 nn0cn 12394 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
34 pncan1 11544 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) ∈ ℂ → (((♯‘𝐹) + 1) − 1) = (♯‘𝐹))
3533, 34syl 17 . . . . . . . . . . . . . . . . 17 ((♯‘𝐹) ∈ ℕ0 → (((♯‘𝐹) + 1) − 1) = (♯‘𝐹))
3632, 35sylan9eqr 2786 . . . . . . . . . . . . . . . 16 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) → ((♯‘𝑃) − 1) = (♯‘𝐹))
3736ex 412 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝑃) = ((♯‘𝐹) + 1) → ((♯‘𝑃) − 1) = (♯‘𝐹)))
3831, 37syld 47 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝑃) − 1) = (♯‘𝐹)))
3929, 38syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ Word dom (iEdg‘𝐺) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝑃) − 1) = (♯‘𝐹)))
4039imp 406 . . . . . . . . . . . 12 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → ((♯‘𝑃) − 1) = (♯‘𝐹))
4140oveq2d 7365 . . . . . . . . . . 11 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (0..^((♯‘𝑃) − 1)) = (0..^(♯‘𝐹)))
4241raleqdv 3289 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
43423adant3 1132 . . . . . . . . 9 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4443adantl 481 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(♯‘𝐹)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4528, 44mpbird 257 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))
4645adantr 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ∧ 𝑃 ≠ ∅) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))
47 eqid 2729 . . . . . . 7 (Edg‘𝐺) = (Edg‘𝐺)
482, 47iswwlks 29781 . . . . . 6 (𝑃 ∈ (WWalks‘𝐺) ↔ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
495, 8, 46, 48syl3anbrc 1344 . . . . 5 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) ∧ 𝑃 ≠ ∅) → 𝑃 ∈ (WWalks‘𝐺))
5049ex 412 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → (𝑃 ≠ ∅ → 𝑃 ∈ (WWalks‘𝐺)))
5150ex 412 . . 3 (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝑃 ≠ ∅ → 𝑃 ∈ (WWalks‘𝐺))))
524, 51sylbid 240 . 2 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 → (𝑃 ≠ ∅ → 𝑃 ∈ (WWalks‘𝐺))))
531, 52mpdi 45 1 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃𝑃 ∈ (WWalks‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4284  {cpr 4579   class class class wbr 5092  dom cdm 5619  ran crn 5620  Fun wfun 6476   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012  cmin 11347  0cn0 12384  ...cfz 13410  ..^cfzo 13557  chash 14237  Word cword 14420  Vtxcvtx 28941  iEdgciedg 28942  Edgcedg 28992  UHGraphcuhgr 29001  UPGraphcupgr 29025  Walkscwlks 29542  WWalkscwwlks 29770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-edg 28993  df-uhgr 29003  df-upgr 29027  df-wlks 29545  df-wwlks 29775
This theorem is referenced by:  wlklnwwlkln1  29813  wlkiswwlks  29821  wlkiswwlkupgr  29823  elwspths2spth  29912
  Copyright terms: Public domain W3C validator