MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul31d Structured version   Visualization version   GIF version

Theorem mul31d 11373
Description: Commutative/associative law. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
muld.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
addcomd.2 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
addcand.3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
Assertion
Ref Expression
mul31d (๐œ‘ โ†’ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ถ ยท ๐ต) ยท ๐ด))

Proof of Theorem mul31d
StepHypRef Expression
1 muld.1 . 2 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
2 addcomd.2 . 2 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
3 addcand.3 . 2 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
4 mul31 11329 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ถ ยท ๐ต) ยท ๐ด))
51, 2, 3, 4syl3anc 1372 1 (๐œ‘ โ†’ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ถ ยท ๐ต) ยท ๐ด))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1542   โˆˆ wcel 2107  (class class class)co 7362  โ„‚cc 11056   ยท cmul 11063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-mulcl 11120  ax-mulcom 11122  ax-mulass 11124
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-iota 6453  df-fv 6509  df-ov 7365
This theorem is referenced by:  lawcoslem1  26181
  Copyright terms: Public domain W3C validator