MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lawcoslem1 Structured version   Visualization version   GIF version

Theorem lawcoslem1 26782
Description: Lemma for lawcos 26783. Here we prove the law for a point at the origin and two distinct points U and V, using an expanded version of the signed angle expression on the complex plane. (Contributed by David A. Wheeler, 11-Jun-2015.)
Hypotheses
Ref Expression
lawcoslem1.1 (𝜑𝑈 ∈ ℂ)
lawcoslem1.2 (𝜑𝑉 ∈ ℂ)
lawcoslem1.3 (𝜑𝑈 ≠ 0)
lawcoslem1.4 (𝜑𝑉 ≠ 0)
Assertion
Ref Expression
lawcoslem1 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))

Proof of Theorem lawcoslem1
StepHypRef Expression
1 lawcoslem1.1 . . 3 (𝜑𝑈 ∈ ℂ)
2 lawcoslem1.2 . . 3 (𝜑𝑉 ∈ ℂ)
3 sqabssub 15307 . . 3 ((𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ) → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))))
41, 2, 3syl2anc 584 . 2 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))))
5 lawcoslem1.4 . . . . . . . . 9 (𝜑𝑉 ≠ 0)
61, 2, 5absdivd 15479 . . . . . . . 8 (𝜑 → (abs‘(𝑈 / 𝑉)) = ((abs‘𝑈) / (abs‘𝑉)))
76oveq2d 7426 . . . . . . 7 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉))) = ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉))))
87oveq2d 7426 . . . . . 6 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))) = (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
91abscld 15460 . . . . . . . . 9 (𝜑 → (abs‘𝑈) ∈ ℝ)
102abscld 15460 . . . . . . . . 9 (𝜑 → (abs‘𝑉) ∈ ℝ)
119, 10remulcld 11270 . . . . . . . 8 (𝜑 → ((abs‘𝑈) · (abs‘𝑉)) ∈ ℝ)
1211recnd 11268 . . . . . . 7 (𝜑 → ((abs‘𝑈) · (abs‘𝑉)) ∈ ℂ)
131, 2, 5divcld 12022 . . . . . . . . 9 (𝜑 → (𝑈 / 𝑉) ∈ ℂ)
1413recld 15218 . . . . . . . 8 (𝜑 → (ℜ‘(𝑈 / 𝑉)) ∈ ℝ)
1514recnd 11268 . . . . . . 7 (𝜑 → (ℜ‘(𝑈 / 𝑉)) ∈ ℂ)
169recnd 11268 . . . . . . . 8 (𝜑 → (abs‘𝑈) ∈ ℂ)
1710recnd 11268 . . . . . . . 8 (𝜑 → (abs‘𝑉) ∈ ℂ)
182, 5absne0d 15471 . . . . . . . 8 (𝜑 → (abs‘𝑉) ≠ 0)
1916, 17, 18divcld 12022 . . . . . . 7 (𝜑 → ((abs‘𝑈) / (abs‘𝑉)) ∈ ℂ)
20 lawcoslem1.3 . . . . . . . . 9 (𝜑𝑈 ≠ 0)
211, 20absne0d 15471 . . . . . . . 8 (𝜑 → (abs‘𝑈) ≠ 0)
2216, 17, 21, 18divne0d 12038 . . . . . . 7 (𝜑 → ((abs‘𝑈) / (abs‘𝑉)) ≠ 0)
2312, 15, 19, 22div12d 12058 . . . . . 6 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
248, 23eqtrd 2771 . . . . 5 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
2512, 16, 17, 21, 18divdiv2d 12054 . . . . . . 7 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉))) = ((((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) / (abs‘𝑈)))
2617sqvald 14166 . . . . . . . . . 10 (𝜑 → ((abs‘𝑉)↑2) = ((abs‘𝑉) · (abs‘𝑉)))
2726oveq1d 7425 . . . . . . . . 9 (𝜑 → (((abs‘𝑉)↑2) · (abs‘𝑈)) = (((abs‘𝑉) · (abs‘𝑉)) · (abs‘𝑈)))
2816, 17, 17mul31d 11451 . . . . . . . . 9 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) = (((abs‘𝑉) · (abs‘𝑉)) · (abs‘𝑈)))
2927, 28eqtr4d 2774 . . . . . . . 8 (𝜑 → (((abs‘𝑉)↑2) · (abs‘𝑈)) = (((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)))
3029oveq1d 7425 . . . . . . 7 (𝜑 → ((((abs‘𝑉)↑2) · (abs‘𝑈)) / (abs‘𝑈)) = ((((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) / (abs‘𝑈)))
3117sqcld 14167 . . . . . . . 8 (𝜑 → ((abs‘𝑉)↑2) ∈ ℂ)
3231, 16, 21divcan4d 12028 . . . . . . 7 (𝜑 → ((((abs‘𝑉)↑2) · (abs‘𝑈)) / (abs‘𝑈)) = ((abs‘𝑉)↑2))
3325, 30, 323eqtr2rd 2778 . . . . . 6 (𝜑 → ((abs‘𝑉)↑2) = (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉))))
3433oveq2d 7426 . . . . 5 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
3515, 31mulcomd 11261 . . . . . . 7 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (((abs‘𝑉)↑2) · (ℜ‘(𝑈 / 𝑉))))
3610resqcld 14148 . . . . . . . 8 (𝜑 → ((abs‘𝑉)↑2) ∈ ℝ)
3736, 13remul2d 15251 . . . . . . 7 (𝜑 → (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))) = (((abs‘𝑉)↑2) · (ℜ‘(𝑈 / 𝑉))))
3835, 37eqtr4d 2774 . . . . . 6 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))))
391, 31, 2, 5div12d 12058 . . . . . . . 8 (𝜑 → (𝑈 · (((abs‘𝑉)↑2) / 𝑉)) = (((abs‘𝑉)↑2) · (𝑈 / 𝑉)))
4031, 2, 5divrecd 12025 . . . . . . . . . 10 (𝜑 → (((abs‘𝑉)↑2) / 𝑉) = (((abs‘𝑉)↑2) · (1 / 𝑉)))
41 recval 15346 . . . . . . . . . . . . 13 ((𝑉 ∈ ℂ ∧ 𝑉 ≠ 0) → (1 / 𝑉) = ((∗‘𝑉) / ((abs‘𝑉)↑2)))
422, 5, 41syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (1 / 𝑉) = ((∗‘𝑉) / ((abs‘𝑉)↑2)))
4342oveq2d 7426 . . . . . . . . . . 11 (𝜑 → (((abs‘𝑉)↑2) · (1 / 𝑉)) = (((abs‘𝑉)↑2) · ((∗‘𝑉) / ((abs‘𝑉)↑2))))
442cjcld 15220 . . . . . . . . . . . 12 (𝜑 → (∗‘𝑉) ∈ ℂ)
45 sqne0 14146 . . . . . . . . . . . . . 14 ((abs‘𝑉) ∈ ℂ → (((abs‘𝑉)↑2) ≠ 0 ↔ (abs‘𝑉) ≠ 0))
4617, 45syl 17 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝑉)↑2) ≠ 0 ↔ (abs‘𝑉) ≠ 0))
4718, 46mpbird 257 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝑉)↑2) ≠ 0)
4844, 31, 47divcan2d 12024 . . . . . . . . . . 11 (𝜑 → (((abs‘𝑉)↑2) · ((∗‘𝑉) / ((abs‘𝑉)↑2))) = (∗‘𝑉))
4943, 48eqtrd 2771 . . . . . . . . . 10 (𝜑 → (((abs‘𝑉)↑2) · (1 / 𝑉)) = (∗‘𝑉))
5040, 49eqtrd 2771 . . . . . . . . 9 (𝜑 → (((abs‘𝑉)↑2) / 𝑉) = (∗‘𝑉))
5150oveq2d 7426 . . . . . . . 8 (𝜑 → (𝑈 · (((abs‘𝑉)↑2) / 𝑉)) = (𝑈 · (∗‘𝑉)))
5239, 51eqtr3d 2773 . . . . . . 7 (𝜑 → (((abs‘𝑉)↑2) · (𝑈 / 𝑉)) = (𝑈 · (∗‘𝑉)))
5352fveq2d 6885 . . . . . 6 (𝜑 → (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))) = (ℜ‘(𝑈 · (∗‘𝑉))))
5438, 53eqtrd 2771 . . . . 5 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (ℜ‘(𝑈 · (∗‘𝑉))))
5524, 34, 543eqtr2rd 2778 . . . 4 (𝜑 → (ℜ‘(𝑈 · (∗‘𝑉))) = (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))
5655oveq2d 7426 . . 3 (𝜑 → (2 · (ℜ‘(𝑈 · (∗‘𝑉)))) = (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉))))))
5756oveq2d 7426 . 2 (𝜑 → ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))
584, 57eqtrd 2771 1 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2933  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cmin 11471   / cdiv 11899  2c2 12300  cexp 14084  ccj 15120  cre 15121  abscabs 15258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260
This theorem is referenced by:  lawcos  26783
  Copyright terms: Public domain W3C validator