MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lawcoslem1 Structured version   Visualization version   GIF version

Theorem lawcoslem1 25401
Description: Lemma for lawcos 25402. Here we prove the law for a point at the origin and two distinct points U and V, using an expanded version of the signed angle expression on the complex plane. (Contributed by David A. Wheeler, 11-Jun-2015.)
Hypotheses
Ref Expression
lawcoslem1.1 (𝜑𝑈 ∈ ℂ)
lawcoslem1.2 (𝜑𝑉 ∈ ℂ)
lawcoslem1.3 (𝜑𝑈 ≠ 0)
lawcoslem1.4 (𝜑𝑉 ≠ 0)
Assertion
Ref Expression
lawcoslem1 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))

Proof of Theorem lawcoslem1
StepHypRef Expression
1 lawcoslem1.1 . . 3 (𝜑𝑈 ∈ ℂ)
2 lawcoslem1.2 . . 3 (𝜑𝑉 ∈ ℂ)
3 sqabssub 14635 . . 3 ((𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ) → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))))
41, 2, 3syl2anc 587 . 2 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))))
5 lawcoslem1.4 . . . . . . . . 9 (𝜑𝑉 ≠ 0)
61, 2, 5absdivd 14807 . . . . . . . 8 (𝜑 → (abs‘(𝑈 / 𝑉)) = ((abs‘𝑈) / (abs‘𝑉)))
76oveq2d 7151 . . . . . . 7 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉))) = ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉))))
87oveq2d 7151 . . . . . 6 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))) = (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
91abscld 14788 . . . . . . . . 9 (𝜑 → (abs‘𝑈) ∈ ℝ)
102abscld 14788 . . . . . . . . 9 (𝜑 → (abs‘𝑉) ∈ ℝ)
119, 10remulcld 10660 . . . . . . . 8 (𝜑 → ((abs‘𝑈) · (abs‘𝑉)) ∈ ℝ)
1211recnd 10658 . . . . . . 7 (𝜑 → ((abs‘𝑈) · (abs‘𝑉)) ∈ ℂ)
131, 2, 5divcld 11405 . . . . . . . . 9 (𝜑 → (𝑈 / 𝑉) ∈ ℂ)
1413recld 14545 . . . . . . . 8 (𝜑 → (ℜ‘(𝑈 / 𝑉)) ∈ ℝ)
1514recnd 10658 . . . . . . 7 (𝜑 → (ℜ‘(𝑈 / 𝑉)) ∈ ℂ)
169recnd 10658 . . . . . . . 8 (𝜑 → (abs‘𝑈) ∈ ℂ)
1710recnd 10658 . . . . . . . 8 (𝜑 → (abs‘𝑉) ∈ ℂ)
182, 5absne0d 14799 . . . . . . . 8 (𝜑 → (abs‘𝑉) ≠ 0)
1916, 17, 18divcld 11405 . . . . . . 7 (𝜑 → ((abs‘𝑈) / (abs‘𝑉)) ∈ ℂ)
20 lawcoslem1.3 . . . . . . . . 9 (𝜑𝑈 ≠ 0)
211, 20absne0d 14799 . . . . . . . 8 (𝜑 → (abs‘𝑈) ≠ 0)
2216, 17, 21, 18divne0d 11421 . . . . . . 7 (𝜑 → ((abs‘𝑈) / (abs‘𝑉)) ≠ 0)
2312, 15, 19, 22div12d 11441 . . . . . 6 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
248, 23eqtrd 2833 . . . . 5 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
2512, 16, 17, 21, 18divdiv2d 11437 . . . . . . 7 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉))) = ((((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) / (abs‘𝑈)))
2617sqvald 13503 . . . . . . . . . 10 (𝜑 → ((abs‘𝑉)↑2) = ((abs‘𝑉) · (abs‘𝑉)))
2726oveq1d 7150 . . . . . . . . 9 (𝜑 → (((abs‘𝑉)↑2) · (abs‘𝑈)) = (((abs‘𝑉) · (abs‘𝑉)) · (abs‘𝑈)))
2816, 17, 17mul31d 10840 . . . . . . . . 9 (𝜑 → (((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) = (((abs‘𝑉) · (abs‘𝑉)) · (abs‘𝑈)))
2927, 28eqtr4d 2836 . . . . . . . 8 (𝜑 → (((abs‘𝑉)↑2) · (abs‘𝑈)) = (((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)))
3029oveq1d 7150 . . . . . . 7 (𝜑 → ((((abs‘𝑉)↑2) · (abs‘𝑈)) / (abs‘𝑈)) = ((((abs‘𝑈) · (abs‘𝑉)) · (abs‘𝑉)) / (abs‘𝑈)))
3117sqcld 13504 . . . . . . . 8 (𝜑 → ((abs‘𝑉)↑2) ∈ ℂ)
3231, 16, 21divcan4d 11411 . . . . . . 7 (𝜑 → ((((abs‘𝑉)↑2) · (abs‘𝑈)) / (abs‘𝑈)) = ((abs‘𝑉)↑2))
3325, 30, 323eqtr2rd 2840 . . . . . 6 (𝜑 → ((abs‘𝑉)↑2) = (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉))))
3433oveq2d 7151 . . . . 5 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = ((ℜ‘(𝑈 / 𝑉)) · (((abs‘𝑈) · (abs‘𝑉)) / ((abs‘𝑈) / (abs‘𝑉)))))
3515, 31mulcomd 10651 . . . . . . 7 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (((abs‘𝑉)↑2) · (ℜ‘(𝑈 / 𝑉))))
3610resqcld 13607 . . . . . . . 8 (𝜑 → ((abs‘𝑉)↑2) ∈ ℝ)
3736, 13remul2d 14578 . . . . . . 7 (𝜑 → (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))) = (((abs‘𝑉)↑2) · (ℜ‘(𝑈 / 𝑉))))
3835, 37eqtr4d 2836 . . . . . 6 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))))
391, 31, 2, 5div12d 11441 . . . . . . . 8 (𝜑 → (𝑈 · (((abs‘𝑉)↑2) / 𝑉)) = (((abs‘𝑉)↑2) · (𝑈 / 𝑉)))
4031, 2, 5divrecd 11408 . . . . . . . . . 10 (𝜑 → (((abs‘𝑉)↑2) / 𝑉) = (((abs‘𝑉)↑2) · (1 / 𝑉)))
41 recval 14674 . . . . . . . . . . . . 13 ((𝑉 ∈ ℂ ∧ 𝑉 ≠ 0) → (1 / 𝑉) = ((∗‘𝑉) / ((abs‘𝑉)↑2)))
422, 5, 41syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (1 / 𝑉) = ((∗‘𝑉) / ((abs‘𝑉)↑2)))
4342oveq2d 7151 . . . . . . . . . . 11 (𝜑 → (((abs‘𝑉)↑2) · (1 / 𝑉)) = (((abs‘𝑉)↑2) · ((∗‘𝑉) / ((abs‘𝑉)↑2))))
442cjcld 14547 . . . . . . . . . . . 12 (𝜑 → (∗‘𝑉) ∈ ℂ)
45 sqne0 13485 . . . . . . . . . . . . . 14 ((abs‘𝑉) ∈ ℂ → (((abs‘𝑉)↑2) ≠ 0 ↔ (abs‘𝑉) ≠ 0))
4617, 45syl 17 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝑉)↑2) ≠ 0 ↔ (abs‘𝑉) ≠ 0))
4718, 46mpbird 260 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝑉)↑2) ≠ 0)
4844, 31, 47divcan2d 11407 . . . . . . . . . . 11 (𝜑 → (((abs‘𝑉)↑2) · ((∗‘𝑉) / ((abs‘𝑉)↑2))) = (∗‘𝑉))
4943, 48eqtrd 2833 . . . . . . . . . 10 (𝜑 → (((abs‘𝑉)↑2) · (1 / 𝑉)) = (∗‘𝑉))
5040, 49eqtrd 2833 . . . . . . . . 9 (𝜑 → (((abs‘𝑉)↑2) / 𝑉) = (∗‘𝑉))
5150oveq2d 7151 . . . . . . . 8 (𝜑 → (𝑈 · (((abs‘𝑉)↑2) / 𝑉)) = (𝑈 · (∗‘𝑉)))
5239, 51eqtr3d 2835 . . . . . . 7 (𝜑 → (((abs‘𝑉)↑2) · (𝑈 / 𝑉)) = (𝑈 · (∗‘𝑉)))
5352fveq2d 6649 . . . . . 6 (𝜑 → (ℜ‘(((abs‘𝑉)↑2) · (𝑈 / 𝑉))) = (ℜ‘(𝑈 · (∗‘𝑉))))
5438, 53eqtrd 2833 . . . . 5 (𝜑 → ((ℜ‘(𝑈 / 𝑉)) · ((abs‘𝑉)↑2)) = (ℜ‘(𝑈 · (∗‘𝑉))))
5524, 34, 543eqtr2rd 2840 . . . 4 (𝜑 → (ℜ‘(𝑈 · (∗‘𝑉))) = (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))
5655oveq2d 7151 . . 3 (𝜑 → (2 · (ℜ‘(𝑈 · (∗‘𝑉)))) = (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉))))))
5756oveq2d 7151 . 2 (𝜑 → ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (ℜ‘(𝑈 · (∗‘𝑉))))) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))
584, 57eqtrd 2833 1 (𝜑 → ((abs‘(𝑈𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  wne 2987  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859   / cdiv 11286  2c2 11680  cexp 13425  ccj 14447  cre 14448  abscabs 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587
This theorem is referenced by:  lawcos  25402
  Copyright terms: Public domain W3C validator