MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul31 Structured version   Visualization version   GIF version

Theorem mul31 11380
Description: Commutative/associative law. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul31 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ถ ยท ๐ต) ยท ๐ด))

Proof of Theorem mul31
StepHypRef Expression
1 mulcom 11193 . . . 4 ((๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
21oveq2d 7418 . . 3 ((๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ด ยท (๐ถ ยท ๐ต)))
323adant1 1127 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ด ยท (๐ถ ยท ๐ต)))
4 mulass 11195 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ต) ยท ๐ถ) = (๐ด ยท (๐ต ยท ๐ถ)))
5 mulcl 11191 . . . . 5 ((๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„‚)
65ancoms 458 . . . 4 ((๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„‚)
763adant1 1127 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„‚)
8 simp1 1133 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ๐ด โˆˆ โ„‚)
97, 8mulcomd 11234 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ถ ยท ๐ต) ยท ๐ด) = (๐ด ยท (๐ถ ยท ๐ต)))
103, 4, 93eqtr4d 2774 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ถ ยท ๐ต) ยท ๐ด))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098  (class class class)co 7402  โ„‚cc 11105   ยท cmul 11112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-mulcl 11169  ax-mulcom 11171  ax-mulass 11173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-iota 6486  df-fv 6542  df-ov 7405
This theorem is referenced by:  mul02lem1  11389  addrid  11393  mul31d  11424
  Copyright terms: Public domain W3C validator