MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul31 Structured version   Visualization version   GIF version

Theorem mul31 11411
Description: Commutative/associative law. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul31 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ถ ยท ๐ต) ยท ๐ด))

Proof of Theorem mul31
StepHypRef Expression
1 mulcom 11224 . . . 4 ((๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
21oveq2d 7436 . . 3 ((๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ด ยท (๐ถ ยท ๐ต)))
323adant1 1128 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ด ยท (๐ถ ยท ๐ต)))
4 mulass 11226 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ต) ยท ๐ถ) = (๐ด ยท (๐ต ยท ๐ถ)))
5 mulcl 11222 . . . . 5 ((๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„‚)
65ancoms 458 . . . 4 ((๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„‚)
763adant1 1128 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ถ ยท ๐ต) โˆˆ โ„‚)
8 simp1 1134 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ๐ด โˆˆ โ„‚)
97, 8mulcomd 11265 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ถ ยท ๐ต) ยท ๐ด) = (๐ด ยท (๐ถ ยท ๐ต)))
103, 4, 93eqtr4d 2778 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ถ ยท ๐ต) ยท ๐ด))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆง w3a 1085   = wceq 1534   โˆˆ wcel 2099  (class class class)co 7420  โ„‚cc 11136   ยท cmul 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-mulcl 11200  ax-mulcom 11202  ax-mulass 11204
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-iota 6500  df-fv 6556  df-ov 7423
This theorem is referenced by:  mul02lem1  11420  addrid  11424  mul31d  11455
  Copyright terms: Public domain W3C validator