| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul4d | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| mul4d.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mul4d | ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mul4d.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 5 | mul4 11302 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-mulcl 11090 ax-mulcom 11092 ax-mulass 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 |
| This theorem is referenced by: remullem 15053 absmul 15219 binomrisefac 15967 cosadd 16092 tanadd 16094 eulerthlem2 16711 mul4sqlem 16883 odadd2 19746 itgmulc2 25751 plymullem1 26135 chordthmlem4 26761 heron 26764 quartlem1 26783 dchrmulcl 27176 bposlem9 27219 lgsdir 27259 lgsdi 27261 lgsquad2lem1 27311 chtppilimlem1 27400 rplogsumlem1 27411 dchrvmasumlem1 27422 dchrvmasum2lem 27423 chpdifbndlem1 27480 pntlemf 27532 brbtwn2 28868 colinearalglem4 28872 binom2subadd 32698 zringfrac 33501 constrmulcl 33737 madjusmdetlem4 33796 hgt750lemf 34620 hgt750leme 34625 circum 35646 itgmulc2nc 37667 flt4lem5e 42629 pellexlem6 42807 pell1234qrmulcl 42828 rmxyadd 42894 wallispi2lem2 46054 dirkertrigeqlem3 46082 cevathlem1 46849 itsclc0xyqsolr 48755 |
| Copyright terms: Public domain | W3C validator |