![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul4d | Structured version Visualization version GIF version |
Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
mul4d.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
mul4d | ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | mul4d.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
5 | mul4 11427 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) | |
6 | 1, 2, 3, 4, 5 | syl22anc 839 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 · cmul 11158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-mulcl 11215 ax-mulcom 11217 ax-mulass 11219 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: remullem 15164 absmul 15330 binomrisefac 16075 cosadd 16198 tanadd 16200 eulerthlem2 16816 mul4sqlem 16987 odadd2 19882 itgmulc2 25884 plymullem1 26268 chordthmlem4 26893 heron 26896 quartlem1 26915 dchrmulcl 27308 bposlem9 27351 lgsdir 27391 lgsdi 27393 lgsquad2lem1 27443 chtppilimlem1 27532 rplogsumlem1 27543 dchrvmasumlem1 27554 dchrvmasum2lem 27555 chpdifbndlem1 27612 pntlemf 27664 brbtwn2 28935 colinearalglem4 28939 zringfrac 33562 madjusmdetlem4 33791 hgt750lemf 34647 hgt750leme 34652 circum 35659 itgmulc2nc 37675 flt4lem5e 42643 pellexlem6 42822 pell1234qrmulcl 42843 rmxyadd 42910 wallispi2lem2 46028 dirkertrigeqlem3 46056 cevathlem1 46823 itsclc0xyqsolr 48619 |
Copyright terms: Public domain | W3C validator |