| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul4d | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| mul4d.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mul4d | ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mul4d.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 5 | mul4 11408 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 · cmul 11139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-mulcl 11196 ax-mulcom 11198 ax-mulass 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: remullem 15152 absmul 15318 binomrisefac 16063 cosadd 16188 tanadd 16190 eulerthlem2 16806 mul4sqlem 16978 odadd2 19835 itgmulc2 25792 plymullem1 26176 chordthmlem4 26802 heron 26805 quartlem1 26824 dchrmulcl 27217 bposlem9 27260 lgsdir 27300 lgsdi 27302 lgsquad2lem1 27352 chtppilimlem1 27441 rplogsumlem1 27452 dchrvmasumlem1 27463 dchrvmasum2lem 27464 chpdifbndlem1 27521 pntlemf 27573 brbtwn2 28889 colinearalglem4 28893 binom2subadd 32724 zringfrac 33574 constrmulcl 33810 madjusmdetlem4 33866 hgt750lemf 34690 hgt750leme 34695 circum 35701 itgmulc2nc 37717 flt4lem5e 42646 pellexlem6 42824 pell1234qrmulcl 42845 rmxyadd 42912 wallispi2lem2 46068 dirkertrigeqlem3 46096 cevathlem1 46863 itsclc0xyqsolr 48716 |
| Copyright terms: Public domain | W3C validator |