Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mul4d | Structured version Visualization version GIF version |
Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
mul4d.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
mul4d | ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | mul4d.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
5 | mul4 11089 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) | |
6 | 1, 2, 3, 4, 5 | syl22anc 835 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7260 ℂcc 10816 · cmul 10823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-mulcl 10880 ax-mulcom 10882 ax-mulass 10884 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3071 df-v 3429 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-iota 6381 df-fv 6431 df-ov 7263 |
This theorem is referenced by: remullem 14783 absmul 14950 binomrisefac 15696 cosadd 15818 tanadd 15820 eulerthlem2 16427 mul4sqlem 16598 odadd2 19394 itgmulc2 24941 plymullem1 25318 chordthmlem4 25928 heron 25931 quartlem1 25950 dchrmulcl 26340 bposlem9 26383 lgsdir 26423 lgsdi 26425 lgsquad2lem1 26475 chtppilimlem1 26564 rplogsumlem1 26575 dchrvmasumlem1 26586 dchrvmasum2lem 26587 chpdifbndlem1 26644 pntlemf 26696 brbtwn2 27216 colinearalglem4 27220 madjusmdetlem4 31722 hgt750lemf 32575 hgt750leme 32580 circum 33574 itgmulc2nc 35814 flt4lem5e 40451 pellexlem6 40614 pell1234qrmulcl 40635 rmxyadd 40701 wallispi2lem2 43545 dirkertrigeqlem3 43573 cevathlem1 44312 itsclc0xyqsolr 46045 |
Copyright terms: Public domain | W3C validator |