| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul4d | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| mul4d.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mul4d | ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mul4d.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 5 | mul4 11342 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-mulcl 11130 ax-mulcom 11132 ax-mulass 11134 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: remullem 15094 absmul 15260 binomrisefac 16008 cosadd 16133 tanadd 16135 eulerthlem2 16752 mul4sqlem 16924 odadd2 19779 itgmulc2 25735 plymullem1 26119 chordthmlem4 26745 heron 26748 quartlem1 26767 dchrmulcl 27160 bposlem9 27203 lgsdir 27243 lgsdi 27245 lgsquad2lem1 27295 chtppilimlem1 27384 rplogsumlem1 27395 dchrvmasumlem1 27406 dchrvmasum2lem 27407 chpdifbndlem1 27464 pntlemf 27516 brbtwn2 28832 colinearalglem4 28836 binom2subadd 32665 zringfrac 33525 constrmulcl 33761 madjusmdetlem4 33820 hgt750lemf 34644 hgt750leme 34649 circum 35661 itgmulc2nc 37682 flt4lem5e 42644 pellexlem6 42822 pell1234qrmulcl 42843 rmxyadd 42910 wallispi2lem2 46070 dirkertrigeqlem3 46098 cevathlem1 46865 itsclc0xyqsolr 48755 |
| Copyright terms: Public domain | W3C validator |