MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul4d Structured version   Visualization version   GIF version

Theorem mul4d 10588
Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
muld.1 (𝜑𝐴 ∈ ℂ)
addcomd.2 (𝜑𝐵 ∈ ℂ)
addcand.3 (𝜑𝐶 ∈ ℂ)
mul4d.4 (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
mul4d (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))

Proof of Theorem mul4d
StepHypRef Expression
1 muld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 addcomd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 addcand.3 . 2 (𝜑𝐶 ∈ ℂ)
4 mul4d.4 . 2 (𝜑𝐷 ∈ ℂ)
5 mul4 10544 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
61, 2, 3, 4, 5syl22anc 829 1 (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  (class class class)co 6922  cc 10270   · cmul 10277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-mulcl 10334  ax-mulcom 10336  ax-mulass 10338
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-iota 6099  df-fv 6143  df-ov 6925
This theorem is referenced by:  remullem  14275  absmul  14441  binomrisefac  15175  cosadd  15297  tanadd  15299  eulerthlem2  15891  mul4sqlem  16061  odadd2  18638  itgmulc2  24037  plymullem1  24407  chordthmlem4  25013  heron  25016  quartlem1  25035  dchrmulcl  25426  bposlem9  25469  lgsdir  25509  lgsdi  25511  lgsquad2lem1  25561  chtppilimlem1  25614  rplogsumlem1  25625  dchrvmasumlem1  25636  dchrvmasum2lem  25637  chpdifbndlem1  25694  pntlemf  25746  brbtwn2  26254  colinearalglem4  26258  madjusmdetlem4  30494  hgt750lemf  31333  hgt750leme  31338  circum  32165  itgmulc2nc  34103  pellexlem6  38358  pell1234qrmulcl  38379  rmxyadd  38445  wallispi2lem2  41216  dirkertrigeqlem3  41244  cevathlem1  41983  itsclc0xyqsolr  43505
  Copyright terms: Public domain W3C validator