| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul4d | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| mul4d.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mul4d | ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mul4d.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 5 | mul4 11278 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 · cmul 11008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-mulcl 11065 ax-mulcom 11067 ax-mulass 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: remullem 15032 absmul 15198 binomrisefac 15946 cosadd 16071 tanadd 16073 eulerthlem2 16690 mul4sqlem 16862 odadd2 19759 itgmulc2 25760 plymullem1 26144 chordthmlem4 26770 heron 26773 quartlem1 26792 dchrmulcl 27185 bposlem9 27228 lgsdir 27268 lgsdi 27270 lgsquad2lem1 27320 chtppilimlem1 27409 rplogsumlem1 27420 dchrvmasumlem1 27431 dchrvmasum2lem 27432 chpdifbndlem1 27489 pntlemf 27541 brbtwn2 28881 colinearalglem4 28885 binom2subadd 32720 zringfrac 33514 constrmulcl 33779 madjusmdetlem4 33838 hgt750lemf 34661 hgt750leme 34666 circum 35706 itgmulc2nc 37727 flt4lem5e 42688 pellexlem6 42866 pell1234qrmulcl 42887 rmxyadd 42953 wallispi2lem2 46109 dirkertrigeqlem3 46137 cevathlem1 46904 itsclc0xyqsolr 48800 |
| Copyright terms: Public domain | W3C validator |