MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul4d Structured version   Visualization version   GIF version

Theorem mul4d 11502
Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
muld.1 (𝜑𝐴 ∈ ℂ)
addcomd.2 (𝜑𝐵 ∈ ℂ)
addcand.3 (𝜑𝐶 ∈ ℂ)
mul4d.4 (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
mul4d (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))

Proof of Theorem mul4d
StepHypRef Expression
1 muld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 addcomd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 addcand.3 . 2 (𝜑𝐶 ∈ ℂ)
4 mul4d.4 . 2 (𝜑𝐷 ∈ ℂ)
5 mul4 11458 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
61, 2, 3, 4, 5syl22anc 838 1 (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  (class class class)co 7448  cc 11182   · cmul 11189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-mulcl 11246  ax-mulcom 11248  ax-mulass 11250
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  remullem  15177  absmul  15343  binomrisefac  16090  cosadd  16213  tanadd  16215  eulerthlem2  16829  mul4sqlem  17000  odadd2  19891  itgmulc2  25889  plymullem1  26273  chordthmlem4  26896  heron  26899  quartlem1  26918  dchrmulcl  27311  bposlem9  27354  lgsdir  27394  lgsdi  27396  lgsquad2lem1  27446  chtppilimlem1  27535  rplogsumlem1  27546  dchrvmasumlem1  27557  dchrvmasum2lem  27558  chpdifbndlem1  27615  pntlemf  27667  brbtwn2  28938  colinearalglem4  28942  zringfrac  33547  madjusmdetlem4  33776  hgt750lemf  34630  hgt750leme  34635  circum  35642  itgmulc2nc  37648  flt4lem5e  42611  pellexlem6  42790  pell1234qrmulcl  42811  rmxyadd  42878  wallispi2lem2  45993  dirkertrigeqlem3  46021  cevathlem1  46788  itsclc0xyqsolr  48503
  Copyright terms: Public domain W3C validator