| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul32d | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mul32d | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mul32 11286 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 · cmul 11018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-mulcom 11077 ax-mulass 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 |
| This theorem is referenced by: conjmul 11845 modmul1 13833 binom3 14133 bernneq 14138 expmulnbnd 14144 discr 14149 bcm1k 14224 bcp1n 14225 reccn2 15506 binomlem 15738 binomfallfaclem2 15949 tanadd 16078 eirrlem 16115 dvds2ln 16202 bezoutlem4 16455 divgcdcoprm0 16578 modprm0 16719 nrginvrcnlem 24607 tcphcphlem2 25164 csbren 25327 radcnvlem1 26350 tanarg 26556 cxpeq 26695 quad2 26777 binom4 26788 dquartlem2 26790 dquart 26791 quart1lem 26793 dvatan 26873 log2cnv 26882 basellem8 27026 bcmono 27216 gausslemma2d 27313 lgsquadlem1 27319 2lgslem3b 27336 2lgslem3c 27337 2lgslem3d 27338 rplogsumlem1 27423 dchrisumlem2 27429 chpdifbndlem1 27492 selberg3lem1 27496 selberg4 27500 selberg3r 27508 pntrlog2bndlem2 27517 pntrlog2bndlem3 27518 pntrlog2bndlem5 27520 pntlemf 27544 pntlemo 27546 ostth2lem1 27557 ostth2lem3 27574 zringfrac 33526 constrrtcc 33769 logdivsqrle 34684 circum 35739 lcmineqlem8 42149 lcmineqlem12 42153 flt4lem5f 42775 jm2.25 43116 jm2.27c 43124 binomcxplemnotnn0 44473 dvasinbx 46042 stirlinglem3 46198 dirkercncflem2 46226 cevathlem1 46989 itschlc0yqe 48885 |
| Copyright terms: Public domain | W3C validator |