| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul32d | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mul32d | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mul32 11276 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 · cmul 11008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-mulcom 11067 ax-mulass 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: conjmul 11835 modmul1 13828 binom3 14128 bernneq 14133 expmulnbnd 14139 discr 14144 bcm1k 14219 bcp1n 14220 reccn2 15501 binomlem 15733 binomfallfaclem2 15944 tanadd 16073 eirrlem 16110 dvds2ln 16197 bezoutlem4 16450 divgcdcoprm0 16573 modprm0 16714 nrginvrcnlem 24604 tcphcphlem2 25161 csbren 25324 radcnvlem1 26347 tanarg 26553 cxpeq 26692 quad2 26774 binom4 26785 dquartlem2 26787 dquart 26788 quart1lem 26790 dvatan 26870 log2cnv 26879 basellem8 27023 bcmono 27213 gausslemma2d 27310 lgsquadlem1 27316 2lgslem3b 27333 2lgslem3c 27334 2lgslem3d 27335 rplogsumlem1 27420 dchrisumlem2 27426 chpdifbndlem1 27489 selberg3lem1 27493 selberg4 27497 selberg3r 27505 pntrlog2bndlem2 27514 pntrlog2bndlem3 27515 pntrlog2bndlem5 27517 pntlemf 27541 pntlemo 27543 ostth2lem1 27554 ostth2lem3 27571 zringfrac 33514 constrrtcc 33743 logdivsqrle 34658 circum 35706 lcmineqlem8 42068 lcmineqlem12 42072 flt4lem5f 42689 jm2.25 43031 jm2.27c 43039 binomcxplemnotnn0 44388 dvasinbx 45957 stirlinglem3 46113 dirkercncflem2 46141 cevathlem1 46904 itschlc0yqe 48791 |
| Copyright terms: Public domain | W3C validator |