Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mul32d | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
mul32d | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | mul32 10837 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 (class class class)co 7151 ℂcc 10566 · cmul 10573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 ax-mulcom 10632 ax-mulass 10634 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-un 3864 df-in 3866 df-ss 3876 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-iota 6295 df-fv 6344 df-ov 7154 |
This theorem is referenced by: conjmul 11388 modmul1 13334 binom3 13628 bernneq 13633 expmulnbnd 13639 discr 13644 bcm1k 13718 bcp1n 13719 reccn2 14994 binomlem 15225 binomfallfaclem2 15435 tanadd 15561 eirrlem 15598 dvds2ln 15683 bezoutlem4 15934 divgcdcoprm0 16054 modprm0 16190 nrginvrcnlem 23386 tcphcphlem2 23929 csbren 24092 radcnvlem1 25100 tanarg 25302 cxpeq 25438 quad2 25517 binom4 25528 dquartlem2 25530 dquart 25531 quart1lem 25533 dvatan 25613 log2cnv 25622 basellem8 25765 bcmono 25953 gausslemma2d 26050 lgsquadlem1 26056 2lgslem3b 26073 2lgslem3c 26074 2lgslem3d 26075 rplogsumlem1 26160 dchrisumlem2 26166 chpdifbndlem1 26229 selberg3lem1 26233 selberg4 26237 selberg3r 26245 pntrlog2bndlem2 26254 pntrlog2bndlem3 26255 pntrlog2bndlem5 26257 pntlemf 26281 pntlemo 26283 ostth2lem1 26294 ostth2lem3 26311 logdivsqrle 32142 circum 33141 lcmineqlem8 39596 lcmineqlem12 39600 flt4lem5f 39979 jm2.25 40306 jm2.27c 40314 binomcxplemnotnn0 41426 dvasinbx 42921 stirlinglem3 43077 dirkercncflem2 43105 cevathlem1 43840 itschlc0yqe 45532 |
Copyright terms: Public domain | W3C validator |