| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul32d | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mul32d | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mul32 11406 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 · cmul 11139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-mulcom 11198 ax-mulass 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: conjmul 11963 modmul1 13947 binom3 14247 bernneq 14252 expmulnbnd 14258 discr 14263 bcm1k 14338 bcp1n 14339 reccn2 15618 binomlem 15850 binomfallfaclem2 16061 tanadd 16190 eirrlem 16227 dvds2ln 16313 bezoutlem4 16566 divgcdcoprm0 16689 modprm0 16830 nrginvrcnlem 24635 tcphcphlem2 25193 csbren 25356 radcnvlem1 26379 tanarg 26585 cxpeq 26724 quad2 26806 binom4 26817 dquartlem2 26819 dquart 26820 quart1lem 26822 dvatan 26902 log2cnv 26911 basellem8 27055 bcmono 27245 gausslemma2d 27342 lgsquadlem1 27348 2lgslem3b 27365 2lgslem3c 27366 2lgslem3d 27367 rplogsumlem1 27452 dchrisumlem2 27458 chpdifbndlem1 27521 selberg3lem1 27525 selberg4 27529 selberg3r 27537 pntrlog2bndlem2 27546 pntrlog2bndlem3 27547 pntrlog2bndlem5 27549 pntlemf 27573 pntlemo 27575 ostth2lem1 27586 ostth2lem3 27603 zringfrac 33574 constrrtcc 33774 logdivsqrle 34687 circum 35701 lcmineqlem8 42054 lcmineqlem12 42058 flt4lem5f 42647 jm2.25 42990 jm2.27c 42998 binomcxplemnotnn0 44347 dvasinbx 45916 stirlinglem3 46072 dirkercncflem2 46100 cevathlem1 46863 itschlc0yqe 48707 |
| Copyright terms: Public domain | W3C validator |