| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul32d | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mul32d | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mul32 11300 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-mulcom 11092 ax-mulass 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 |
| This theorem is referenced by: conjmul 11859 modmul1 13849 binom3 14149 bernneq 14154 expmulnbnd 14160 discr 14165 bcm1k 14240 bcp1n 14241 reccn2 15522 binomlem 15754 binomfallfaclem2 15965 tanadd 16094 eirrlem 16131 dvds2ln 16218 bezoutlem4 16471 divgcdcoprm0 16594 modprm0 16735 nrginvrcnlem 24595 tcphcphlem2 25152 csbren 25315 radcnvlem1 26338 tanarg 26544 cxpeq 26683 quad2 26765 binom4 26776 dquartlem2 26778 dquart 26779 quart1lem 26781 dvatan 26861 log2cnv 26870 basellem8 27014 bcmono 27204 gausslemma2d 27301 lgsquadlem1 27307 2lgslem3b 27324 2lgslem3c 27325 2lgslem3d 27326 rplogsumlem1 27411 dchrisumlem2 27417 chpdifbndlem1 27480 selberg3lem1 27484 selberg4 27488 selberg3r 27496 pntrlog2bndlem2 27505 pntrlog2bndlem3 27506 pntrlog2bndlem5 27508 pntlemf 27532 pntlemo 27534 ostth2lem1 27545 ostth2lem3 27562 zringfrac 33501 constrrtcc 33701 logdivsqrle 34617 circum 35646 lcmineqlem8 42009 lcmineqlem12 42013 flt4lem5f 42630 jm2.25 42972 jm2.27c 42980 binomcxplemnotnn0 44329 dvasinbx 45902 stirlinglem3 46058 dirkercncflem2 46086 cevathlem1 46849 itschlc0yqe 48746 |
| Copyright terms: Public domain | W3C validator |