![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul32d | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | โข (๐ โ ๐ด โ โ) |
addcomd.2 | โข (๐ โ ๐ต โ โ) |
addcand.3 | โข (๐ โ ๐ถ โ โ) |
Ref | Expression |
---|---|
mul32d | โข (๐ โ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) ยท ๐ต)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 โข (๐ โ ๐ด โ โ) | |
2 | addcomd.2 | . 2 โข (๐ โ ๐ต โ โ) | |
3 | addcand.3 | . 2 โข (๐ โ ๐ถ โ โ) | |
4 | mul32 11380 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) ยท ๐ต)) | |
5 | 1, 2, 3, 4 | syl3anc 1372 | 1 โข (๐ โ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) ยท ๐ต)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1542 โ wcel 2107 (class class class)co 7409 โcc 11108 ยท cmul 11115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-mulcom 11174 ax-mulass 11176 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 |
This theorem is referenced by: conjmul 11931 modmul1 13889 binom3 14187 bernneq 14192 expmulnbnd 14198 discr 14203 bcm1k 14275 bcp1n 14276 reccn2 15541 binomlem 15775 binomfallfaclem2 15984 tanadd 16110 eirrlem 16147 dvds2ln 16232 bezoutlem4 16484 divgcdcoprm0 16602 modprm0 16738 nrginvrcnlem 24208 tcphcphlem2 24753 csbren 24916 radcnvlem1 25925 tanarg 26127 cxpeq 26265 quad2 26344 binom4 26355 dquartlem2 26357 dquart 26358 quart1lem 26360 dvatan 26440 log2cnv 26449 basellem8 26592 bcmono 26780 gausslemma2d 26877 lgsquadlem1 26883 2lgslem3b 26900 2lgslem3c 26901 2lgslem3d 26902 rplogsumlem1 26987 dchrisumlem2 26993 chpdifbndlem1 27056 selberg3lem1 27060 selberg4 27064 selberg3r 27072 pntrlog2bndlem2 27081 pntrlog2bndlem3 27082 pntrlog2bndlem5 27084 pntlemf 27108 pntlemo 27110 ostth2lem1 27121 ostth2lem3 27138 logdivsqrle 33693 circum 34690 lcmineqlem8 40949 lcmineqlem12 40953 flt4lem5f 41447 jm2.25 41786 jm2.27c 41794 binomcxplemnotnn0 43163 dvasinbx 44684 stirlinglem3 44840 dirkercncflem2 44868 cevathlem1 45631 itschlc0yqe 47494 |
Copyright terms: Public domain | W3C validator |