| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul32d | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mul32d | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mul32 11340 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-mulcom 11132 ax-mulass 11134 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: conjmul 11899 modmul1 13889 binom3 14189 bernneq 14194 expmulnbnd 14200 discr 14205 bcm1k 14280 bcp1n 14281 reccn2 15563 binomlem 15795 binomfallfaclem2 16006 tanadd 16135 eirrlem 16172 dvds2ln 16259 bezoutlem4 16512 divgcdcoprm0 16635 modprm0 16776 nrginvrcnlem 24579 tcphcphlem2 25136 csbren 25299 radcnvlem1 26322 tanarg 26528 cxpeq 26667 quad2 26749 binom4 26760 dquartlem2 26762 dquart 26763 quart1lem 26765 dvatan 26845 log2cnv 26854 basellem8 26998 bcmono 27188 gausslemma2d 27285 lgsquadlem1 27291 2lgslem3b 27308 2lgslem3c 27309 2lgslem3d 27310 rplogsumlem1 27395 dchrisumlem2 27401 chpdifbndlem1 27464 selberg3lem1 27468 selberg4 27472 selberg3r 27480 pntrlog2bndlem2 27489 pntrlog2bndlem3 27490 pntrlog2bndlem5 27492 pntlemf 27516 pntlemo 27518 ostth2lem1 27529 ostth2lem3 27546 zringfrac 33525 constrrtcc 33725 logdivsqrle 34641 circum 35661 lcmineqlem8 42024 lcmineqlem12 42028 flt4lem5f 42645 jm2.25 42988 jm2.27c 42996 binomcxplemnotnn0 44345 dvasinbx 45918 stirlinglem3 46074 dirkercncflem2 46102 cevathlem1 46865 itschlc0yqe 48749 |
| Copyright terms: Public domain | W3C validator |