Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mul32d | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
mul32d | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | mul32 11141 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-mulcom 10935 ax-mulass 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: conjmul 11692 modmul1 13644 binom3 13939 bernneq 13944 expmulnbnd 13950 discr 13955 bcm1k 14029 bcp1n 14030 reccn2 15306 binomlem 15541 binomfallfaclem2 15750 tanadd 15876 eirrlem 15913 dvds2ln 15998 bezoutlem4 16250 divgcdcoprm0 16370 modprm0 16506 nrginvrcnlem 23855 tcphcphlem2 24400 csbren 24563 radcnvlem1 25572 tanarg 25774 cxpeq 25910 quad2 25989 binom4 26000 dquartlem2 26002 dquart 26003 quart1lem 26005 dvatan 26085 log2cnv 26094 basellem8 26237 bcmono 26425 gausslemma2d 26522 lgsquadlem1 26528 2lgslem3b 26545 2lgslem3c 26546 2lgslem3d 26547 rplogsumlem1 26632 dchrisumlem2 26638 chpdifbndlem1 26701 selberg3lem1 26705 selberg4 26709 selberg3r 26717 pntrlog2bndlem2 26726 pntrlog2bndlem3 26727 pntrlog2bndlem5 26729 pntlemf 26753 pntlemo 26755 ostth2lem1 26766 ostth2lem3 26783 logdivsqrle 32630 circum 33632 lcmineqlem8 40044 lcmineqlem12 40048 flt4lem5f 40494 jm2.25 40821 jm2.27c 40829 binomcxplemnotnn0 41974 dvasinbx 43461 stirlinglem3 43617 dirkercncflem2 43645 cevathlem1 44383 itschlc0yqe 46106 |
Copyright terms: Public domain | W3C validator |