![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul32d | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
mul32d | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | mul32 11456 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-mulcom 11248 ax-mulass 11250 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: conjmul 12011 modmul1 13975 binom3 14273 bernneq 14278 expmulnbnd 14284 discr 14289 bcm1k 14364 bcp1n 14365 reccn2 15643 binomlem 15877 binomfallfaclem2 16088 tanadd 16215 eirrlem 16252 dvds2ln 16337 bezoutlem4 16589 divgcdcoprm0 16712 modprm0 16852 nrginvrcnlem 24733 tcphcphlem2 25289 csbren 25452 radcnvlem1 26474 tanarg 26679 cxpeq 26818 quad2 26900 binom4 26911 dquartlem2 26913 dquart 26914 quart1lem 26916 dvatan 26996 log2cnv 27005 basellem8 27149 bcmono 27339 gausslemma2d 27436 lgsquadlem1 27442 2lgslem3b 27459 2lgslem3c 27460 2lgslem3d 27461 rplogsumlem1 27546 dchrisumlem2 27552 chpdifbndlem1 27615 selberg3lem1 27619 selberg4 27623 selberg3r 27631 pntrlog2bndlem2 27640 pntrlog2bndlem3 27641 pntrlog2bndlem5 27643 pntlemf 27667 pntlemo 27669 ostth2lem1 27680 ostth2lem3 27697 zringfrac 33547 constrrtcc 33726 logdivsqrle 34627 circum 35642 lcmineqlem8 41993 lcmineqlem12 41997 flt4lem5f 42612 jm2.25 42956 jm2.27c 42964 binomcxplemnotnn0 44325 dvasinbx 45841 stirlinglem3 45997 dirkercncflem2 46025 cevathlem1 46788 itschlc0yqe 48494 |
Copyright terms: Public domain | W3C validator |