![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul32d | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | โข (๐ โ ๐ด โ โ) |
addcomd.2 | โข (๐ โ ๐ต โ โ) |
addcand.3 | โข (๐ โ ๐ถ โ โ) |
Ref | Expression |
---|---|
mul32d | โข (๐ โ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) ยท ๐ต)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 โข (๐ โ ๐ด โ โ) | |
2 | addcomd.2 | . 2 โข (๐ โ ๐ต โ โ) | |
3 | addcand.3 | . 2 โข (๐ โ ๐ถ โ โ) | |
4 | mul32 11379 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) ยท ๐ต)) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | 1 โข (๐ โ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) ยท ๐ต)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 (class class class)co 7408 โcc 11107 ยท cmul 11114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-mulcom 11173 ax-mulass 11175 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 |
This theorem is referenced by: conjmul 11930 modmul1 13888 binom3 14186 bernneq 14191 expmulnbnd 14197 discr 14202 bcm1k 14274 bcp1n 14275 reccn2 15540 binomlem 15774 binomfallfaclem2 15983 tanadd 16109 eirrlem 16146 dvds2ln 16231 bezoutlem4 16483 divgcdcoprm0 16601 modprm0 16737 nrginvrcnlem 24207 tcphcphlem2 24752 csbren 24915 radcnvlem1 25924 tanarg 26126 cxpeq 26262 quad2 26341 binom4 26352 dquartlem2 26354 dquart 26355 quart1lem 26357 dvatan 26437 log2cnv 26446 basellem8 26589 bcmono 26777 gausslemma2d 26874 lgsquadlem1 26880 2lgslem3b 26897 2lgslem3c 26898 2lgslem3d 26899 rplogsumlem1 26984 dchrisumlem2 26990 chpdifbndlem1 27053 selberg3lem1 27057 selberg4 27061 selberg3r 27069 pntrlog2bndlem2 27078 pntrlog2bndlem3 27079 pntrlog2bndlem5 27081 pntlemf 27105 pntlemo 27107 ostth2lem1 27118 ostth2lem3 27135 logdivsqrle 33657 circum 34654 lcmineqlem8 40896 lcmineqlem12 40900 flt4lem5f 41400 jm2.25 41728 jm2.27c 41736 binomcxplemnotnn0 43105 dvasinbx 44626 stirlinglem3 44782 dirkercncflem2 44810 cevathlem1 45573 itschlc0yqe 47436 |
Copyright terms: Public domain | W3C validator |