Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mul32d | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
mul32d | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | mul32 11071 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-mulcom 10866 ax-mulass 10868 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: conjmul 11622 modmul1 13572 binom3 13867 bernneq 13872 expmulnbnd 13878 discr 13883 bcm1k 13957 bcp1n 13958 reccn2 15234 binomlem 15469 binomfallfaclem2 15678 tanadd 15804 eirrlem 15841 dvds2ln 15926 bezoutlem4 16178 divgcdcoprm0 16298 modprm0 16434 nrginvrcnlem 23761 tcphcphlem2 24305 csbren 24468 radcnvlem1 25477 tanarg 25679 cxpeq 25815 quad2 25894 binom4 25905 dquartlem2 25907 dquart 25908 quart1lem 25910 dvatan 25990 log2cnv 25999 basellem8 26142 bcmono 26330 gausslemma2d 26427 lgsquadlem1 26433 2lgslem3b 26450 2lgslem3c 26451 2lgslem3d 26452 rplogsumlem1 26537 dchrisumlem2 26543 chpdifbndlem1 26606 selberg3lem1 26610 selberg4 26614 selberg3r 26622 pntrlog2bndlem2 26631 pntrlog2bndlem3 26632 pntrlog2bndlem5 26634 pntlemf 26658 pntlemo 26660 ostth2lem1 26671 ostth2lem3 26688 logdivsqrle 32530 circum 33532 lcmineqlem8 39972 lcmineqlem12 39976 flt4lem5f 40410 jm2.25 40737 jm2.27c 40745 binomcxplemnotnn0 41863 dvasinbx 43351 stirlinglem3 43507 dirkercncflem2 43535 cevathlem1 44270 itschlc0yqe 45994 |
Copyright terms: Public domain | W3C validator |