![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul32d | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcomd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
mul32d | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcomd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addcand.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | mul32 11425 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 · cmul 11158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-mulcom 11217 ax-mulass 11219 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: conjmul 11982 modmul1 13962 binom3 14260 bernneq 14265 expmulnbnd 14271 discr 14276 bcm1k 14351 bcp1n 14352 reccn2 15630 binomlem 15862 binomfallfaclem2 16073 tanadd 16200 eirrlem 16237 dvds2ln 16323 bezoutlem4 16576 divgcdcoprm0 16699 modprm0 16839 nrginvrcnlem 24728 tcphcphlem2 25284 csbren 25447 radcnvlem1 26471 tanarg 26676 cxpeq 26815 quad2 26897 binom4 26908 dquartlem2 26910 dquart 26911 quart1lem 26913 dvatan 26993 log2cnv 27002 basellem8 27146 bcmono 27336 gausslemma2d 27433 lgsquadlem1 27439 2lgslem3b 27456 2lgslem3c 27457 2lgslem3d 27458 rplogsumlem1 27543 dchrisumlem2 27549 chpdifbndlem1 27612 selberg3lem1 27616 selberg4 27620 selberg3r 27628 pntrlog2bndlem2 27637 pntrlog2bndlem3 27638 pntrlog2bndlem5 27640 pntlemf 27664 pntlemo 27666 ostth2lem1 27677 ostth2lem3 27694 zringfrac 33562 constrrtcc 33741 logdivsqrle 34644 circum 35659 lcmineqlem8 42018 lcmineqlem12 42022 flt4lem5f 42644 jm2.25 42988 jm2.27c 42996 binomcxplemnotnn0 44352 dvasinbx 45876 stirlinglem3 46032 dirkercncflem2 46060 cevathlem1 46823 itschlc0yqe 48610 |
Copyright terms: Public domain | W3C validator |