|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nbrne1 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) | 
| Ref | Expression | 
|---|---|
| nbrne1 | ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵 ≠ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq2 5147 | . . . 4 ⊢ (𝐵 = 𝐶 → (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶)) | |
| 2 | 1 | biimpcd 249 | . . 3 ⊢ (𝐴𝑅𝐵 → (𝐵 = 𝐶 → 𝐴𝑅𝐶)) | 
| 3 | 2 | necon3bd 2954 | . 2 ⊢ (𝐴𝑅𝐵 → (¬ 𝐴𝑅𝐶 → 𝐵 ≠ 𝐶)) | 
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵 ≠ 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2940 class class class wbr 5143 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 | 
| This theorem is referenced by: zeneo 16376 dalem43 39717 cdleme3h 40237 cdleme7ga 40250 cdlemeg46req 40531 cdlemh 40819 cdlemk12 40852 cdlemk12u 40874 lighneallem1 47592 | 
| Copyright terms: Public domain | W3C validator |