| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbrne1 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
| Ref | Expression |
|---|---|
| nbrne1 | ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5128 | . . . 4 ⊢ (𝐵 = 𝐶 → (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶)) | |
| 2 | 1 | biimpcd 249 | . . 3 ⊢ (𝐴𝑅𝐵 → (𝐵 = 𝐶 → 𝐴𝑅𝐶)) |
| 3 | 2 | necon3bd 2947 | . 2 ⊢ (𝐴𝑅𝐵 → (¬ 𝐴𝑅𝐶 → 𝐵 ≠ 𝐶)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2933 class class class wbr 5124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 |
| This theorem is referenced by: zeneo 16363 dalem43 39739 cdleme3h 40259 cdleme7ga 40272 cdlemeg46req 40553 cdlemh 40841 cdlemk12 40874 cdlemk12u 40896 lighneallem1 47586 |
| Copyright terms: Public domain | W3C validator |