MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbrne1 Structured version   Visualization version   GIF version

Theorem nbrne1 5089
Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
Assertion
Ref Expression
nbrne1 ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵𝐶)

Proof of Theorem nbrne1
StepHypRef Expression
1 breq2 5074 . . . 4 (𝐵 = 𝐶 → (𝐴𝑅𝐵𝐴𝑅𝐶))
21biimpcd 248 . . 3 (𝐴𝑅𝐵 → (𝐵 = 𝐶𝐴𝑅𝐶))
32necon3bd 2956 . 2 (𝐴𝑅𝐵 → (¬ 𝐴𝑅𝐶𝐵𝐶))
43imp 406 1 ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wne 2942   class class class wbr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071
This theorem is referenced by:  zeneo  15976  dalem43  37656  cdleme3h  38176  cdleme7ga  38189  cdlemeg46req  38470  cdlemh  38758  cdlemk12  38791  cdlemk12u  38813  lighneallem1  44945
  Copyright terms: Public domain W3C validator