MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbrne1 Structured version   Visualization version   GIF version

Theorem nbrne1 5129
Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
Assertion
Ref Expression
nbrne1 ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵𝐶)

Proof of Theorem nbrne1
StepHypRef Expression
1 breq2 5114 . . . 4 (𝐵 = 𝐶 → (𝐴𝑅𝐵𝐴𝑅𝐶))
21biimpcd 249 . . 3 (𝐴𝑅𝐵 → (𝐵 = 𝐶𝐴𝑅𝐶))
32necon3bd 2940 . 2 (𝐴𝑅𝐵 → (¬ 𝐴𝑅𝐶𝐵𝐶))
43imp 406 1 ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wne 2926   class class class wbr 5110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111
This theorem is referenced by:  zeneo  16316  dalem43  39716  cdleme3h  40236  cdleme7ga  40249  cdlemeg46req  40530  cdlemh  40818  cdlemk12  40851  cdlemk12u  40873  lighneallem1  47610
  Copyright terms: Public domain W3C validator