![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbrne1 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
nbrne1 | ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5146 | . . . 4 ⊢ (𝐵 = 𝐶 → (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶)) | |
2 | 1 | biimpcd 248 | . . 3 ⊢ (𝐴𝑅𝐵 → (𝐵 = 𝐶 → 𝐴𝑅𝐶)) |
3 | 2 | necon3bd 2950 | . 2 ⊢ (𝐴𝑅𝐵 → (¬ 𝐴𝑅𝐶 → 𝐵 ≠ 𝐶)) |
4 | 3 | imp 406 | 1 ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ≠ wne 2936 class class class wbr 5142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 |
This theorem is referenced by: zeneo 16309 dalem43 39182 cdleme3h 39702 cdleme7ga 39715 cdlemeg46req 39996 cdlemh 40284 cdlemk12 40317 cdlemk12u 40339 lighneallem1 46939 |
Copyright terms: Public domain | W3C validator |