![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem43 | Structured version Visualization version GIF version |
Description: Lemma for dath 38544. Planes 𝐺𝐻𝐼 and 𝑌 are different. (Contributed by NM, 8-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalem.l | ⊢ ≤ = (le‘𝐾) |
dalem.j | ⊢ ∨ = (join‘𝐾) |
dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
dalem38.m | ⊢ ∧ = (meet‘𝐾) |
dalem38.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem38.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem38.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalem38.g | ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
dalem38.h | ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) |
dalem38.i | ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) |
Ref | Expression |
---|---|
dalem43 | ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∨ 𝐼) ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | 1 | dalemkelat 38432 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Lat) |
3 | 2 | 3ad2ant1 1134 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ Lat) |
4 | 1 | dalemkehl 38431 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
5 | 4 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
6 | dalem.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
7 | dalem.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
8 | dalem.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | dalem.ps | . . . . 5 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
10 | dalem38.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
11 | dalem38.o | . . . . 5 ⊢ 𝑂 = (LPlanes‘𝐾) | |
12 | dalem38.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
13 | dalem38.z | . . . . 5 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
14 | dalem38.g | . . . . 5 ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) | |
15 | 1, 6, 7, 8, 9, 10, 11, 12, 13, 14 | dalem23 38504 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ∈ 𝐴) |
16 | dalem38.h | . . . . 5 ⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) | |
17 | 1, 6, 7, 8, 9, 10, 11, 12, 13, 16 | dalem29 38509 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐻 ∈ 𝐴) |
18 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
19 | 18, 7, 8 | hlatjcl 38174 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴) → (𝐺 ∨ 𝐻) ∈ (Base‘𝐾)) |
20 | 5, 15, 17, 19 | syl3anc 1372 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐺 ∨ 𝐻) ∈ (Base‘𝐾)) |
21 | dalem38.i | . . . . 5 ⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) | |
22 | 1, 6, 7, 8, 9, 10, 11, 12, 13, 21 | dalem34 38514 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐼 ∈ 𝐴) |
23 | 18, 8 | atbase 38096 | . . . 4 ⊢ (𝐼 ∈ 𝐴 → 𝐼 ∈ (Base‘𝐾)) |
24 | 22, 23 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐼 ∈ (Base‘𝐾)) |
25 | 18, 6, 7 | latlej2 18397 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝐺 ∨ 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾)) → 𝐼 ≤ ((𝐺 ∨ 𝐻) ∨ 𝐼)) |
26 | 3, 20, 24, 25 | syl3anc 1372 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐼 ≤ ((𝐺 ∨ 𝐻) ∨ 𝐼)) |
27 | 1, 6, 7, 8, 9, 10, 11, 12, 13, 21 | dalem35 38515 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝐼 ≤ 𝑌) |
28 | nbrne1 5165 | . 2 ⊢ ((𝐼 ≤ ((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ ¬ 𝐼 ≤ 𝑌) → ((𝐺 ∨ 𝐻) ∨ 𝐼) ≠ 𝑌) | |
29 | 26, 27, 28 | syl2anc 585 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∨ 𝐼) ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 class class class wbr 5146 ‘cfv 6539 (class class class)co 7403 Basecbs 17139 lecple 17199 joincjn 18259 meetcmee 18260 Latclat 18379 Atomscatm 38070 HLchlt 38157 LPlanesclpl 38300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-riota 7359 df-ov 7406 df-oprab 7407 df-proset 18243 df-poset 18261 df-plt 18278 df-lub 18294 df-glb 18295 df-join 18296 df-meet 18297 df-p0 18373 df-lat 18380 df-clat 18447 df-oposet 37983 df-ol 37985 df-oml 37986 df-covers 38073 df-ats 38074 df-atl 38105 df-cvlat 38129 df-hlat 38158 df-llines 38306 df-lplanes 38307 |
This theorem is referenced by: dalem44 38524 dalem51 38531 |
Copyright terms: Public domain | W3C validator |