Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem43 Structured version   Visualization version   GIF version

Theorem dalem43 38523
Description: Lemma for dath 38544. Planes 𝐺𝐻𝐼 and 𝑌 are different. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem38.m = (meet‘𝐾)
dalem38.o 𝑂 = (LPlanes‘𝐾)
dalem38.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem38.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem38.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem38.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem38.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem43 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ≠ 𝑌)

Proof of Theorem dalem43
StepHypRef Expression
1 dalem.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkelat 38432 . . . 4 (𝜑𝐾 ∈ Lat)
323ad2ant1 1134 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
41dalemkehl 38431 . . . . 5 (𝜑𝐾 ∈ HL)
543ad2ant1 1134 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
6 dalem.l . . . . 5 = (le‘𝐾)
7 dalem.j . . . . 5 = (join‘𝐾)
8 dalem.a . . . . 5 𝐴 = (Atoms‘𝐾)
9 dalem.ps . . . . 5 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
10 dalem38.m . . . . 5 = (meet‘𝐾)
11 dalem38.o . . . . 5 𝑂 = (LPlanes‘𝐾)
12 dalem38.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
13 dalem38.z . . . . 5 𝑍 = ((𝑆 𝑇) 𝑈)
14 dalem38.g . . . . 5 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
151, 6, 7, 8, 9, 10, 11, 12, 13, 14dalem23 38504 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
16 dalem38.h . . . . 5 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
171, 6, 7, 8, 9, 10, 11, 12, 13, 16dalem29 38509 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
18 eqid 2733 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
1918, 7, 8hlatjcl 38174 . . . 4 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
205, 15, 17, 19syl3anc 1372 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
21 dalem38.i . . . . 5 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
221, 6, 7, 8, 9, 10, 11, 12, 13, 21dalem34 38514 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
2318, 8atbase 38096 . . . 4 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
2422, 23syl 17 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
2518, 6, 7latlej2 18397 . . 3 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾)) → 𝐼 ((𝐺 𝐻) 𝐼))
263, 20, 24, 25syl3anc 1372 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ((𝐺 𝐻) 𝐼))
271, 6, 7, 8, 9, 10, 11, 12, 13, 21dalem35 38515 . 2 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐼 𝑌)
28 nbrne1 5165 . 2 ((𝐼 ((𝐺 𝐻) 𝐼) ∧ ¬ 𝐼 𝑌) → ((𝐺 𝐻) 𝐼) ≠ 𝑌)
2926, 27, 28syl2anc 585 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ≠ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941   class class class wbr 5146  cfv 6539  (class class class)co 7403  Basecbs 17139  lecple 17199  joincjn 18259  meetcmee 18260  Latclat 18379  Atomscatm 38070  HLchlt 38157  LPlanesclpl 38300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-proset 18243  df-poset 18261  df-plt 18278  df-lub 18294  df-glb 18295  df-join 18296  df-meet 18297  df-p0 18373  df-lat 18380  df-clat 18447  df-oposet 37983  df-ol 37985  df-oml 37986  df-covers 38073  df-ats 38074  df-atl 38105  df-cvlat 38129  df-hlat 38158  df-llines 38306  df-lplanes 38307
This theorem is referenced by:  dalem44  38524  dalem51  38531
  Copyright terms: Public domain W3C validator