Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem43 Structured version   Visualization version   GIF version

Theorem dalem43 35790
 Description: Lemma for dath 35811. Planes 𝐺𝐻𝐼 and 𝑌 are different. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem38.m = (meet‘𝐾)
dalem38.o 𝑂 = (LPlanes‘𝐾)
dalem38.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem38.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem38.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem38.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem38.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem43 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ≠ 𝑌)

Proof of Theorem dalem43
StepHypRef Expression
1 dalem.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkelat 35699 . . . 4 (𝜑𝐾 ∈ Lat)
323ad2ant1 1169 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
41dalemkehl 35698 . . . . 5 (𝜑𝐾 ∈ HL)
543ad2ant1 1169 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
6 dalem.l . . . . 5 = (le‘𝐾)
7 dalem.j . . . . 5 = (join‘𝐾)
8 dalem.a . . . . 5 𝐴 = (Atoms‘𝐾)
9 dalem.ps . . . . 5 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
10 dalem38.m . . . . 5 = (meet‘𝐾)
11 dalem38.o . . . . 5 𝑂 = (LPlanes‘𝐾)
12 dalem38.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
13 dalem38.z . . . . 5 𝑍 = ((𝑆 𝑇) 𝑈)
14 dalem38.g . . . . 5 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
151, 6, 7, 8, 9, 10, 11, 12, 13, 14dalem23 35771 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
16 dalem38.h . . . . 5 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
171, 6, 7, 8, 9, 10, 11, 12, 13, 16dalem29 35776 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
18 eqid 2825 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
1918, 7, 8hlatjcl 35442 . . . 4 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
205, 15, 17, 19syl3anc 1496 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
21 dalem38.i . . . . 5 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
221, 6, 7, 8, 9, 10, 11, 12, 13, 21dalem34 35781 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
2318, 8atbase 35364 . . . 4 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
2422, 23syl 17 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
2518, 6, 7latlej2 17414 . . 3 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾)) → 𝐼 ((𝐺 𝐻) 𝐼))
263, 20, 24, 25syl3anc 1496 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ((𝐺 𝐻) 𝐼))
271, 6, 7, 8, 9, 10, 11, 12, 13, 21dalem35 35782 . 2 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐼 𝑌)
28 nbrne1 4892 . 2 ((𝐼 ((𝐺 𝐻) 𝐼) ∧ ¬ 𝐼 𝑌) → ((𝐺 𝐻) 𝐼) ≠ 𝑌)
2926, 27, 28syl2anc 581 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ≠ 𝑌)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1113   = wceq 1658   ∈ wcel 2166   ≠ wne 2999   class class class wbr 4873  ‘cfv 6123  (class class class)co 6905  Basecbs 16222  lecple 16312  joincjn 17297  meetcmee 17298  Latclat 17398  Atomscatm 35338  HLchlt 35425  LPlanesclpl 35567 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-proset 17281  df-poset 17299  df-plt 17311  df-lub 17327  df-glb 17328  df-join 17329  df-meet 17330  df-p0 17392  df-lat 17399  df-clat 17461  df-oposet 35251  df-ol 35253  df-oml 35254  df-covers 35341  df-ats 35342  df-atl 35373  df-cvlat 35397  df-hlat 35426  df-llines 35573  df-lplanes 35574 This theorem is referenced by:  dalem44  35791  dalem51  35798
 Copyright terms: Public domain W3C validator