MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqnbrtrd Structured version   Visualization version   GIF version

Theorem eqnbrtrd 5092
Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
eqnbrtrd.1 (𝜑𝐴 = 𝐵)
eqnbrtrd.2 (𝜑 → ¬ 𝐵𝑅𝐶)
Assertion
Ref Expression
eqnbrtrd (𝜑 → ¬ 𝐴𝑅𝐶)

Proof of Theorem eqnbrtrd
StepHypRef Expression
1 eqnbrtrd.2 . 2 (𝜑 → ¬ 𝐵𝑅𝐶)
2 eqnbrtrd.1 . . 3 (𝜑𝐴 = 𝐵)
32breq1d 5084 . 2 (𝜑 → (𝐴𝑅𝐶𝐵𝑅𝐶))
41, 3mtbird 325 1 (𝜑 → ¬ 𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539   class class class wbr 5074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075
This theorem is referenced by:  supgtoreq  9229  rlimno1  15365  pczndvds  16566  pcadd  16590  recld2  23977  itg2cnlem2  24927  dgrub  25395  gausslemma2dlem1a  26513  mirbtwnhl  27041  nosupbnd1lem1  33911  nosupbnd2lem1  33918  noinfbnd1lem1  33926  noinfbnd2  33934  sqrtcval  41249
  Copyright terms: Public domain W3C validator