Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqnbrtrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
eqnbrtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqnbrtrd.2 | ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
eqnbrtrd | ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnbrtrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) | |
2 | eqnbrtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breq1d 5080 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
4 | 1, 3 | mtbird 324 | 1 ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: supgtoreq 9159 rlimno1 15293 pczndvds 16494 pcadd 16518 recld2 23883 itg2cnlem2 24832 dgrub 25300 gausslemma2dlem1a 26418 mirbtwnhl 26945 nosupbnd1lem1 33838 nosupbnd2lem1 33845 noinfbnd1lem1 33853 noinfbnd2 33861 sqrtcval 41138 |
Copyright terms: Public domain | W3C validator |