MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqnbrtrd Structured version   Visualization version   GIF version

Theorem eqnbrtrd 5107
Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
eqnbrtrd.1 (𝜑𝐴 = 𝐵)
eqnbrtrd.2 (𝜑 → ¬ 𝐵𝑅𝐶)
Assertion
Ref Expression
eqnbrtrd (𝜑 → ¬ 𝐴𝑅𝐶)

Proof of Theorem eqnbrtrd
StepHypRef Expression
1 eqnbrtrd.2 . 2 (𝜑 → ¬ 𝐵𝑅𝐶)
2 eqnbrtrd.1 . . 3 (𝜑𝐴 = 𝐵)
32breq1d 5099 . 2 (𝜑 → (𝐴𝑅𝐶𝐵𝑅𝐶))
41, 3mtbird 324 1 (𝜑 → ¬ 𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540   class class class wbr 5089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-br 5090
This theorem is referenced by:  supgtoreq  9319  rlimno1  15456  pczndvds  16655  pcadd  16679  recld2  24075  itg2cnlem2  25025  dgrub  25493  gausslemma2dlem1a  26611  nosupbnd1lem1  26954  nosupbnd2lem1  26961  noinfbnd1lem1  26969  noinfbnd2  26977  mirbtwnhl  27243  sqrtcval  41559
  Copyright terms: Public domain W3C validator