![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqnbrtrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
eqnbrtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqnbrtrd.2 | ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
eqnbrtrd | ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnbrtrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) | |
2 | eqnbrtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breq1d 5176 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: supgtoreq 9539 rlimno1 15702 pczndvds 16912 pcadd 16936 recld2 24855 itg2cnlem2 25817 dgrub 26293 gausslemma2dlem1a 27427 nosupbnd1lem1 27771 nosupbnd2lem1 27778 noinfbnd1lem1 27786 noinfbnd2 27794 mirbtwnhl 28706 sqrtcval 43603 |
Copyright terms: Public domain | W3C validator |