| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqnbrtrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| eqnbrtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqnbrtrd.2 | ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqnbrtrd | ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnbrtrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) | |
| 2 | eqnbrtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breq1d 5134 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 class class class wbr 5124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 |
| This theorem is referenced by: supgtoreq 9488 rlimno1 15675 pczndvds 16890 pcadd 16914 recld2 24759 itg2cnlem2 25720 dgrub 26196 gausslemma2dlem1a 27333 nosupbnd1lem1 27677 nosupbnd2lem1 27684 noinfbnd1lem1 27692 noinfbnd2 27700 mirbtwnhl 28664 sqrtcval 43632 |
| Copyright terms: Public domain | W3C validator |