| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqnbrtrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| eqnbrtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqnbrtrd.2 | ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqnbrtrd | ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnbrtrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) | |
| 2 | eqnbrtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breq1d 5120 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 |
| This theorem is referenced by: supgtoreq 9429 rlimno1 15627 pczndvds 16843 pcadd 16867 recld2 24710 itg2cnlem2 25670 dgrub 26146 gausslemma2dlem1a 27283 nosupbnd1lem1 27627 nosupbnd2lem1 27634 noinfbnd1lem1 27642 noinfbnd2 27650 mirbtwnhl 28614 mullt0b2d 42479 sqrtcval 43637 |
| Copyright terms: Public domain | W3C validator |