| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqnbrtrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| eqnbrtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqnbrtrd.2 | ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqnbrtrd | ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnbrtrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) | |
| 2 | eqnbrtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breq1d 5099 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: supgtoreq 9355 rlimno1 15561 pczndvds 16777 pcadd 16801 recld2 24730 itg2cnlem2 25690 dgrub 26166 gausslemma2dlem1a 27303 nosupbnd1lem1 27647 nosupbnd2lem1 27654 noinfbnd1lem1 27662 noinfbnd2 27670 mirbtwnhl 28658 mullt0b2d 42587 sqrtcval 43744 |
| Copyright terms: Public domain | W3C validator |