![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqnbrtrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
eqnbrtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqnbrtrd.2 | ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
eqnbrtrd | ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnbrtrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) | |
2 | eqnbrtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breq1d 5158 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
4 | 1, 3 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 |
This theorem is referenced by: supgtoreq 9508 rlimno1 15687 pczndvds 16899 pcadd 16923 recld2 24850 itg2cnlem2 25812 dgrub 26288 gausslemma2dlem1a 27424 nosupbnd1lem1 27768 nosupbnd2lem1 27775 noinfbnd1lem1 27783 noinfbnd2 27791 mirbtwnhl 28703 sqrtcval 43631 |
Copyright terms: Public domain | W3C validator |