Step | Hyp | Ref
| Expression |
1 | | simp11l 1284 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΎ β HL) |
2 | | simp12l 1286 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
3 | | simp13l 1288 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
4 | | simp21 1206 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π) |
5 | | cdlemef46g.j |
. . . 4
β’ β¨ =
(joinβπΎ) |
6 | | cdlemef46g.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
7 | | eqid 2732 |
. . . 4
β’
(LLinesβπΎ) =
(LLinesβπΎ) |
8 | 5, 6, 7 | llni2 38371 |
. . 3
β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π β π) β (π β¨ π) β (LLinesβπΎ)) |
9 | 1, 2, 3, 4, 8 | syl31anc 1373 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β¨ π) β (LLinesβπΎ)) |
10 | | simp1 1136 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π))) |
11 | | simp23 1208 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β π΄ β§ Β¬ π β€ π)) |
12 | | cdlemef46g.b |
. . . . . 6
β’ π΅ = (BaseβπΎ) |
13 | | cdlemef46g.l |
. . . . . 6
β’ β€ =
(leβπΎ) |
14 | | cdlemef46g.m |
. . . . . 6
β’ β§ =
(meetβπΎ) |
15 | | cdlemef46g.h |
. . . . . 6
β’ π» = (LHypβπΎ) |
16 | | cdlemef46g.u |
. . . . . 6
β’ π = ((π β¨ π) β§ π) |
17 | | cdlemef46g.d |
. . . . . 6
β’ π· = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) |
18 | | cdlemefs46g.e |
. . . . . 6
β’ πΈ = ((π β¨ π) β§ (π· β¨ ((π β¨ π‘) β§ π))) |
19 | | cdlemef46g.f |
. . . . . 6
β’ πΉ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), (β©π¦ β π΅ βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = πΈ)), β¦π / π‘β¦π·) β¨ (π₯ β§ π)))), π₯)) |
20 | | cdlemef46.v |
. . . . . 6
β’ π = ((π β¨ π) β§ π) |
21 | | cdlemef46.n |
. . . . . 6
β’ π = ((π£ β¨ π) β§ (π β¨ ((π β¨ π£) β§ π))) |
22 | | cdlemefs46.o |
. . . . . 6
β’ π = ((π β¨ π) β§ (π β¨ ((π’ β¨ π£) β§ π))) |
23 | | cdlemef46.g |
. . . . . 6
β’ πΊ = (π β π΅ β¦ if((π β π β§ Β¬ π β€ π), (β©π β π΅ βπ’ β π΄ ((Β¬ π’ β€ π β§ (π’ β¨ (π β§ π)) = π) β π = (if(π’ β€ (π β¨ π), (β©π β π΅ βπ£ β π΄ ((Β¬ π£ β€ π β§ Β¬ π£ β€ (π β¨ π)) β π = π)), β¦π’ / π£β¦π) β¨ (π β§ π)))), π)) |
24 | 12, 13, 5, 14, 6, 15, 16, 17, 18, 19, 20, 21, 22, 23 | cdlemeg46fvaw 39375 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π) β ((πΊβπ) β π΄ β§ Β¬ (πΊβπ) β€ π)) |
25 | 10, 11, 4, 24 | syl3anc 1371 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((πΊβπ) β π΄ β§ Β¬ (πΊβπ) β€ π)) |
26 | 25 | simpld 495 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΊβπ) β π΄) |
27 | | simp11 1203 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΎ β HL β§ π β π»)) |
28 | | simp22 1207 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π
β π΄ β§ Β¬ π
β€ π)) |
29 | 12, 13, 5, 14, 6, 15, 16, 17, 18, 19 | cdleme46fvaw 39360 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β π΄ β§ Β¬ π
β€ π)) β ((πΉβπ
) β π΄ β§ Β¬ (πΉβπ
) β€ π)) |
30 | 10, 28, 29 | syl2anc 584 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((πΉβπ
) β π΄ β§ Β¬ (πΉβπ
) β€ π)) |
31 | | simp23l 1294 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
32 | | simp3l 1201 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π
β€ (π β¨ π)) |
33 | 12, 13, 5, 14, 6, 15, 16, 17, 18, 19 | cdleme46fsvlpq 39364 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π)) β§ π
β€ (π β¨ π)) β (πΉβπ
) β€ (π β¨ π)) |
34 | 10, 4, 28, 32, 33 | syl121anc 1375 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΉβπ
) β€ (π β¨ π)) |
35 | | simp3r 1202 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β Β¬ π β€ (π β¨ π)) |
36 | | nbrne2 5167 |
. . . . 5
β’ (((πΉβπ
) β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β (πΉβπ
) β π) |
37 | 34, 35, 36 | syl2anc 584 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΉβπ
) β π) |
38 | | cdlemeg46.x |
. . . . 5
β’ π = (((πΉβπ
) β¨ π) β§ π) |
39 | 13, 5, 14, 6, 15, 38 | lhpat2 38904 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ ((πΉβπ
) β π΄ β§ Β¬ (πΉβπ
) β€ π) β§ (π β π΄ β§ (πΉβπ
) β π)) β π β π΄) |
40 | 27, 30, 31, 37, 39 | syl112anc 1374 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΄) |
41 | 1 | hllatd 38222 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β πΎ β Lat) |
42 | 30 | simpld 495 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΉβπ
) β π΄) |
43 | 12, 5, 6 | hlatjcl 38225 |
. . . . . . . 8
β’ ((πΎ β HL β§ (πΉβπ
) β π΄ β§ π β π΄) β ((πΉβπ
) β¨ π) β π΅) |
44 | 1, 42, 31, 43 | syl3anc 1371 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((πΉβπ
) β¨ π) β π΅) |
45 | | simp11r 1285 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π») |
46 | 12, 15 | lhpbase 38857 |
. . . . . . . 8
β’ (π β π» β π β π΅) |
47 | 45, 46 | syl 17 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β π΅) |
48 | 12, 13, 14 | latmle2 18414 |
. . . . . . 7
β’ ((πΎ β Lat β§ ((πΉβπ
) β¨ π) β π΅ β§ π β π΅) β (((πΉβπ
) β¨ π) β§ π) β€ π) |
49 | 41, 44, 47, 48 | syl3anc 1371 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (((πΉβπ
) β¨ π) β§ π) β€ π) |
50 | 38, 49 | eqbrtrid 5182 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β€ π) |
51 | 25 | simprd 496 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β Β¬ (πΊβπ) β€ π) |
52 | | nbrne2 5167 |
. . . . 5
β’ ((π β€ π β§ Β¬ (πΊβπ) β€ π) β π β (πΊβπ)) |
53 | 50, 51, 52 | syl2anc 584 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π β (πΊβπ)) |
54 | 53 | necomd 2996 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΊβπ) β π) |
55 | 5, 6, 7 | llni2 38371 |
. . 3
β’ (((πΎ β HL β§ (πΊβπ) β π΄ β§ π β π΄) β§ (πΊβπ) β π) β ((πΊβπ) β¨ π) β (LLinesβπΎ)) |
56 | 1, 26, 40, 54, 55 | syl31anc 1373 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((πΊβπ) β¨ π) β (LLinesβπΎ)) |
57 | | simp22l 1292 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π
β π΄) |
58 | 13, 5, 6 | hlatlej1 38233 |
. . . . 5
β’ ((πΎ β HL β§ (πΊβπ) β π΄ β§ π β π΄) β (πΊβπ) β€ ((πΊβπ) β¨ π)) |
59 | 1, 26, 40, 58 | syl3anc 1371 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΊβπ) β€ ((πΊβπ) β¨ π)) |
60 | 12, 13, 5, 14, 6, 15, 16, 17, 18, 19, 20, 21, 22, 23 | cdlemeg46nlpq 39376 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β Β¬ (πΊβπ) β€ (π β¨ π)) |
61 | 10, 4, 11, 35, 60 | syl121anc 1375 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β Β¬ (πΊβπ) β€ (π β¨ π)) |
62 | | nbrne1 5166 |
. . . 4
β’ (((πΊβπ) β€ ((πΊβπ) β¨ π) β§ Β¬ (πΊβπ) β€ (π β¨ π)) β ((πΊβπ) β¨ π) β (π β¨ π)) |
63 | 59, 61, 62 | syl2anc 584 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((πΊβπ) β¨ π) β (π β¨ π)) |
64 | 63 | necomd 2996 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β¨ π) β ((πΊβπ) β¨ π)) |
65 | | cdlemeg46.y |
. . . 4
β’ π = ((π
β¨ (πΊβπ)) β§ π) |
66 | 12, 13, 5, 14, 6, 15, 16, 17, 18, 19, 20, 21, 22, 23, 65, 38 | cdlemeg46rgv 39387 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π
β€ ((πΊβπ) β¨ π)) |
67 | 12, 6 | atbase 38147 |
. . . . 5
β’ (π
β π΄ β π
β π΅) |
68 | 57, 67 | syl 17 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π
β π΅) |
69 | 12, 5, 6 | hlatjcl 38225 |
. . . . 5
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β π΅) |
70 | 1, 2, 3, 69 | syl3anc 1371 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (π β¨ π) β π΅) |
71 | 12, 5, 6 | hlatjcl 38225 |
. . . . 5
β’ ((πΎ β HL β§ (πΊβπ) β π΄ β§ π β π΄) β ((πΊβπ) β¨ π) β π΅) |
72 | 1, 26, 40, 71 | syl3anc 1371 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((πΊβπ) β¨ π) β π΅) |
73 | 12, 13, 14 | latlem12 18415 |
. . . 4
β’ ((πΎ β Lat β§ (π
β π΅ β§ (π β¨ π) β π΅ β§ ((πΊβπ) β¨ π) β π΅)) β ((π
β€ (π β¨ π) β§ π
β€ ((πΊβπ) β¨ π)) β π
β€ ((π β¨ π) β§ ((πΊβπ) β¨ π)))) |
74 | 41, 68, 70, 72, 73 | syl13anc 1372 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β ((π
β€ (π β¨ π) β§ π
β€ ((πΊβπ) β¨ π)) β π
β€ ((π β¨ π) β§ ((πΊβπ) β¨ π)))) |
75 | 32, 66, 74 | mpbi2and 710 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π
β€ ((π β¨ π) β§ ((πΊβπ) β¨ π))) |
76 | 13, 14, 6, 7 | 2llnmeqat 38430 |
. 2
β’ ((πΎ β HL β§ ((π β¨ π) β (LLinesβπΎ) β§ ((πΊβπ) β¨ π) β (LLinesβπΎ) β§ π
β π΄) β§ ((π β¨ π) β ((πΊβπ) β¨ π) β§ π
β€ ((π β¨ π) β§ ((πΊβπ) β¨ π)))) β π
= ((π β¨ π) β§ ((πΊβπ) β¨ π))) |
77 | 1, 9, 56, 57, 64, 75, 76 | syl132anc 1388 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π
β π΄ β§ Β¬ π
β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π
β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β π
= ((π β¨ π) β§ ((πΊβπ) β¨ π))) |