![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lighneallem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for lighneal 46265. (Contributed by AV, 11-Aug-2021.) |
Ref | Expression |
---|---|
lighneallem1 | ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃↑𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12590 | . . . . 5 ⊢ 2 ∈ ℤ | |
2 | simp2 1137 | . . . . 5 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ) | |
3 | iddvdsexp 16219 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 2 ∥ (2↑𝑀)) | |
4 | 1, 2, 3 | sylancr 587 | . . . 4 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 2 ∥ (2↑𝑀)) |
5 | oveq1 7412 | . . . . . 6 ⊢ (𝑃 = 2 → (𝑃↑𝑀) = (2↑𝑀)) | |
6 | 5 | breq2d 5159 | . . . . 5 ⊢ (𝑃 = 2 → (2 ∥ (𝑃↑𝑀) ↔ 2 ∥ (2↑𝑀))) |
7 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ (𝑃↑𝑀) ↔ 2 ∥ (2↑𝑀))) |
8 | 4, 7 | mpbird 256 | . . 3 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 2 ∥ (𝑃↑𝑀)) |
9 | iddvdsexp 16219 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∥ (2↑𝑁)) | |
10 | 1, 9 | mpan 688 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 2 ∥ (2↑𝑁)) |
11 | 10 | notnotd 144 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ ¬ 2 ∥ (2↑𝑁)) |
12 | 2nn 12281 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℕ) |
14 | nnnn0 12475 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
15 | 13, 14 | nnexpcld 14204 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ) |
16 | 15 | nnzd 12581 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℤ) |
17 | oddm1even 16282 | . . . . . 6 ⊢ ((2↑𝑁) ∈ ℤ → (¬ 2 ∥ (2↑𝑁) ↔ 2 ∥ ((2↑𝑁) − 1))) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ (2↑𝑁) ↔ 2 ∥ ((2↑𝑁) − 1))) |
19 | 11, 18 | mtbid 323 | . . . 4 ⊢ (𝑁 ∈ ℕ → ¬ 2 ∥ ((2↑𝑁) − 1)) |
20 | 19 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ¬ 2 ∥ ((2↑𝑁) − 1)) |
21 | nbrne1 5166 | . . 3 ⊢ ((2 ∥ (𝑃↑𝑀) ∧ ¬ 2 ∥ ((2↑𝑁) − 1)) → (𝑃↑𝑀) ≠ ((2↑𝑁) − 1)) | |
22 | 8, 20, 21 | syl2anc 584 | . 2 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃↑𝑀) ≠ ((2↑𝑁) − 1)) |
23 | 22 | necomd 2996 | 1 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃↑𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5147 (class class class)co 7405 1c1 11107 − cmin 11440 ℕcn 12208 2c2 12263 ℤcz 12554 ↑cexp 14023 ∥ cdvds 16193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-seq 13963 df-exp 14024 df-dvds 16194 |
This theorem is referenced by: lighneal 46265 |
Copyright terms: Public domain | W3C validator |