![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lighneallem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for lighneal 47010. (Contributed by AV, 11-Aug-2021.) |
Ref | Expression |
---|---|
lighneallem1 | ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃↑𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12619 | . . . . 5 ⊢ 2 ∈ ℤ | |
2 | simp2 1134 | . . . . 5 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ) | |
3 | iddvdsexp 16251 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 2 ∥ (2↑𝑀)) | |
4 | 1, 2, 3 | sylancr 585 | . . . 4 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 2 ∥ (2↑𝑀)) |
5 | oveq1 7420 | . . . . . 6 ⊢ (𝑃 = 2 → (𝑃↑𝑀) = (2↑𝑀)) | |
6 | 5 | breq2d 5156 | . . . . 5 ⊢ (𝑃 = 2 → (2 ∥ (𝑃↑𝑀) ↔ 2 ∥ (2↑𝑀))) |
7 | 6 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ (𝑃↑𝑀) ↔ 2 ∥ (2↑𝑀))) |
8 | 4, 7 | mpbird 256 | . . 3 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 2 ∥ (𝑃↑𝑀)) |
9 | iddvdsexp 16251 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∥ (2↑𝑁)) | |
10 | 1, 9 | mpan 688 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 2 ∥ (2↑𝑁)) |
11 | 10 | notnotd 144 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ ¬ 2 ∥ (2↑𝑁)) |
12 | 2nn 12310 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℕ) |
14 | nnnn0 12504 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
15 | 13, 14 | nnexpcld 14234 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ) |
16 | 15 | nnzd 12610 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℤ) |
17 | oddm1even 16314 | . . . . . 6 ⊢ ((2↑𝑁) ∈ ℤ → (¬ 2 ∥ (2↑𝑁) ↔ 2 ∥ ((2↑𝑁) − 1))) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ (2↑𝑁) ↔ 2 ∥ ((2↑𝑁) − 1))) |
19 | 11, 18 | mtbid 323 | . . . 4 ⊢ (𝑁 ∈ ℕ → ¬ 2 ∥ ((2↑𝑁) − 1)) |
20 | 19 | 3ad2ant3 1132 | . . 3 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ¬ 2 ∥ ((2↑𝑁) − 1)) |
21 | nbrne1 5163 | . . 3 ⊢ ((2 ∥ (𝑃↑𝑀) ∧ ¬ 2 ∥ ((2↑𝑁) − 1)) → (𝑃↑𝑀) ≠ ((2↑𝑁) − 1)) | |
22 | 8, 20, 21 | syl2anc 582 | . 2 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃↑𝑀) ≠ ((2↑𝑁) − 1)) |
23 | 22 | necomd 2986 | 1 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃↑𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 class class class wbr 5144 (class class class)co 7413 1c1 11134 − cmin 11469 ℕcn 12237 2c2 12292 ℤcz 12583 ↑cexp 14053 ∥ cdvds 16225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-n0 12498 df-z 12584 df-uz 12848 df-seq 13994 df-exp 14054 df-dvds 16226 |
This theorem is referenced by: lighneal 47010 |
Copyright terms: Public domain | W3C validator |