![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lighneallem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for lighneal 43178. (Contributed by AV, 11-Aug-2021.) |
Ref | Expression |
---|---|
lighneallem1 | ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃↑𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 11825 | . . . . 5 ⊢ 2 ∈ ℤ | |
2 | simp2 1118 | . . . . 5 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ) | |
3 | iddvdsexp 15491 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 2 ∥ (2↑𝑀)) | |
4 | 1, 2, 3 | sylancr 579 | . . . 4 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 2 ∥ (2↑𝑀)) |
5 | oveq1 6981 | . . . . . 6 ⊢ (𝑃 = 2 → (𝑃↑𝑀) = (2↑𝑀)) | |
6 | 5 | breq2d 4937 | . . . . 5 ⊢ (𝑃 = 2 → (2 ∥ (𝑃↑𝑀) ↔ 2 ∥ (2↑𝑀))) |
7 | 6 | 3ad2ant1 1114 | . . . 4 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ (𝑃↑𝑀) ↔ 2 ∥ (2↑𝑀))) |
8 | 4, 7 | mpbird 249 | . . 3 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 2 ∥ (𝑃↑𝑀)) |
9 | iddvdsexp 15491 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∥ (2↑𝑁)) | |
10 | 1, 9 | mpan 678 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 2 ∥ (2↑𝑁)) |
11 | 10 | notnotd 141 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ ¬ 2 ∥ (2↑𝑁)) |
12 | 2nn 11511 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℕ) |
14 | nnnn0 11713 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
15 | 13, 14 | nnexpcld 13419 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ) |
16 | 15 | nnzd 11897 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℤ) |
17 | oddm1even 15550 | . . . . . 6 ⊢ ((2↑𝑁) ∈ ℤ → (¬ 2 ∥ (2↑𝑁) ↔ 2 ∥ ((2↑𝑁) − 1))) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ (2↑𝑁) ↔ 2 ∥ ((2↑𝑁) − 1))) |
19 | 11, 18 | mtbid 316 | . . . 4 ⊢ (𝑁 ∈ ℕ → ¬ 2 ∥ ((2↑𝑁) − 1)) |
20 | 19 | 3ad2ant3 1116 | . . 3 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ¬ 2 ∥ ((2↑𝑁) − 1)) |
21 | nbrne1 4944 | . . 3 ⊢ ((2 ∥ (𝑃↑𝑀) ∧ ¬ 2 ∥ ((2↑𝑁) − 1)) → (𝑃↑𝑀) ≠ ((2↑𝑁) − 1)) | |
22 | 8, 20, 21 | syl2anc 576 | . 2 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃↑𝑀) ≠ ((2↑𝑁) − 1)) |
23 | 22 | necomd 3015 | 1 ⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃↑𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ≠ wne 2960 class class class wbr 4925 (class class class)co 6974 1c1 10334 − cmin 10668 ℕcn 11437 2c2 11493 ℤcz 11791 ↑cexp 13242 ∥ cdvds 15465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-n0 11706 df-z 11792 df-uz 12057 df-seq 13183 df-exp 13243 df-dvds 15466 |
This theorem is referenced by: lighneal 43178 |
Copyright terms: Public domain | W3C validator |