| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > eigorthi | Structured version Visualization version GIF version | ||
| Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Jan-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eigorthi.1 | ⊢ 𝐴 ∈ ℋ |
| eigorthi.2 | ⊢ 𝐵 ∈ ℋ |
| eigorthi.3 | ⊢ 𝐶 ∈ ℂ |
| eigorthi.4 | ⊢ 𝐷 ∈ ℂ |
| Ref | Expression |
|---|---|
| eigorthi | ⊢ ((((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7440 | . . . 4 ⊢ ((𝑇‘𝐵) = (𝐷 ·ℎ 𝐵) → (𝐴 ·ih (𝑇‘𝐵)) = (𝐴 ·ih (𝐷 ·ℎ 𝐵))) | |
| 2 | eigorthi.4 | . . . . 5 ⊢ 𝐷 ∈ ℂ | |
| 3 | eigorthi.1 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
| 4 | eigorthi.2 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
| 5 | his5 31106 | . . . . 5 ⊢ ((𝐷 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐷 ·ℎ 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵))) | |
| 6 | 2, 3, 4, 5 | mp3an 1462 | . . . 4 ⊢ (𝐴 ·ih (𝐷 ·ℎ 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵)) |
| 7 | 1, 6 | eqtrdi 2792 | . . 3 ⊢ ((𝑇‘𝐵) = (𝐷 ·ℎ 𝐵) → (𝐴 ·ih (𝑇‘𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵))) |
| 8 | oveq1 7439 | . . . 4 ⊢ ((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) → ((𝑇‘𝐴) ·ih 𝐵) = ((𝐶 ·ℎ 𝐴) ·ih 𝐵)) | |
| 9 | eigorthi.3 | . . . . 5 ⊢ 𝐶 ∈ ℂ | |
| 10 | ax-his3 31104 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐶 ·ℎ 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵))) | |
| 11 | 9, 3, 4, 10 | mp3an 1462 | . . . 4 ⊢ ((𝐶 ·ℎ 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵)) |
| 12 | 8, 11 | eqtrdi 2792 | . . 3 ⊢ ((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵))) |
| 13 | 7, 12 | eqeqan12rd 2751 | . 2 ⊢ (((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)))) |
| 14 | 3, 4 | hicli 31101 | . . . . . . . 8 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
| 15 | 2 | cjcli 15209 | . . . . . . . . 9 ⊢ (∗‘𝐷) ∈ ℂ |
| 16 | mulcan2 11902 | . . . . . . . . 9 ⊢ (((∗‘𝐷) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0)) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶)) | |
| 17 | 15, 9, 16 | mp3an12 1452 | . . . . . . . 8 ⊢ (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶)) |
| 18 | 14, 17 | mpan 690 | . . . . . . 7 ⊢ ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶)) |
| 19 | eqcom 2743 | . . . . . . 7 ⊢ ((∗‘𝐷) = 𝐶 ↔ 𝐶 = (∗‘𝐷)) | |
| 20 | 18, 19 | bitrdi 287 | . . . . . 6 ⊢ ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ 𝐶 = (∗‘𝐷))) |
| 21 | 20 | biimpcd 249 | . . . . 5 ⊢ (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → ((𝐴 ·ih 𝐵) ≠ 0 → 𝐶 = (∗‘𝐷))) |
| 22 | 21 | necon1d 2961 | . . . 4 ⊢ (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐶 ≠ (∗‘𝐷) → (𝐴 ·ih 𝐵) = 0)) |
| 23 | 22 | com12 32 | . . 3 ⊢ (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐴 ·ih 𝐵) = 0)) |
| 24 | oveq2 7440 | . . . 4 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0)) | |
| 25 | oveq2 7440 | . . . . 5 ⊢ ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = (𝐶 · 0)) | |
| 26 | 9 | mul01i 11452 | . . . . . 6 ⊢ (𝐶 · 0) = 0 |
| 27 | 15 | mul01i 11452 | . . . . . 6 ⊢ ((∗‘𝐷) · 0) = 0 |
| 28 | 26, 27 | eqtr4i 2767 | . . . . 5 ⊢ (𝐶 · 0) = ((∗‘𝐷) · 0) |
| 29 | 25, 28 | eqtrdi 2792 | . . . 4 ⊢ ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0)) |
| 30 | 24, 29 | eqtr4d 2779 | . . 3 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵))) |
| 31 | 23, 30 | impbid1 225 | . 2 ⊢ (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (𝐴 ·ih 𝐵) = 0)) |
| 32 | 13, 31 | sylan9bb 509 | 1 ⊢ ((((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 0cc0 11156 · cmul 11161 ∗ccj 15136 ℋchba 30939 ·ℎ csm 30941 ·ih csp 30942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-hfvmul 31025 ax-hfi 31099 ax-his1 31102 ax-his3 31104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-cj 15139 df-re 15140 df-im 15141 |
| This theorem is referenced by: eigorth 31858 |
| Copyright terms: Public domain | W3C validator |