HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigorthi Structured version   Visualization version   GIF version

Theorem eigorthi 29772
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Jan-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigorthi.1 𝐴 ∈ ℋ
eigorthi.2 𝐵 ∈ ℋ
eigorthi.3 𝐶 ∈ ℂ
eigorthi.4 𝐷 ∈ ℂ
Assertion
Ref Expression
eigorthi ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))

Proof of Theorem eigorthi
StepHypRef Expression
1 oveq2 7178 . . . 4 ((𝑇𝐵) = (𝐷 · 𝐵) → (𝐴 ·ih (𝑇𝐵)) = (𝐴 ·ih (𝐷 · 𝐵)))
2 eigorthi.4 . . . . 5 𝐷 ∈ ℂ
3 eigorthi.1 . . . . 5 𝐴 ∈ ℋ
4 eigorthi.2 . . . . 5 𝐵 ∈ ℋ
5 his5 29021 . . . . 5 ((𝐷 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐷 · 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵)))
62, 3, 4, 5mp3an 1462 . . . 4 (𝐴 ·ih (𝐷 · 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵))
71, 6eqtrdi 2789 . . 3 ((𝑇𝐵) = (𝐷 · 𝐵) → (𝐴 ·ih (𝑇𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵)))
8 oveq1 7177 . . . 4 ((𝑇𝐴) = (𝐶 · 𝐴) → ((𝑇𝐴) ·ih 𝐵) = ((𝐶 · 𝐴) ·ih 𝐵))
9 eigorthi.3 . . . . 5 𝐶 ∈ ℂ
10 ax-his3 29019 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐶 · 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵)))
119, 3, 4, 10mp3an 1462 . . . 4 ((𝐶 · 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵))
128, 11eqtrdi 2789 . . 3 ((𝑇𝐴) = (𝐶 · 𝐴) → ((𝑇𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵)))
137, 12eqeqan12rd 2757 . 2 (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵))))
143, 4hicli 29016 . . . . . . . 8 (𝐴 ·ih 𝐵) ∈ ℂ
152cjcli 14618 . . . . . . . . 9 (∗‘𝐷) ∈ ℂ
16 mulcan2 11356 . . . . . . . . 9 (((∗‘𝐷) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0)) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
1715, 9, 16mp3an12 1452 . . . . . . . 8 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
1814, 17mpan 690 . . . . . . 7 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
19 eqcom 2745 . . . . . . 7 ((∗‘𝐷) = 𝐶𝐶 = (∗‘𝐷))
2018, 19bitrdi 290 . . . . . 6 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ 𝐶 = (∗‘𝐷)))
2120biimpcd 252 . . . . 5 (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → ((𝐴 ·ih 𝐵) ≠ 0 → 𝐶 = (∗‘𝐷)))
2221necon1d 2956 . . . 4 (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐶 ≠ (∗‘𝐷) → (𝐴 ·ih 𝐵) = 0))
2322com12 32 . . 3 (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐴 ·ih 𝐵) = 0))
24 oveq2 7178 . . . 4 ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0))
25 oveq2 7178 . . . . 5 ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = (𝐶 · 0))
269mul01i 10908 . . . . . 6 (𝐶 · 0) = 0
2715mul01i 10908 . . . . . 6 ((∗‘𝐷) · 0) = 0
2826, 27eqtr4i 2764 . . . . 5 (𝐶 · 0) = ((∗‘𝐷) · 0)
2925, 28eqtrdi 2789 . . . 4 ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0))
3024, 29eqtr4d 2776 . . 3 ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)))
3123, 30impbid1 228 . 2 (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (𝐴 ·ih 𝐵) = 0))
3213, 31sylan9bb 513 1 ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2934  cfv 6339  (class class class)co 7170  cc 10613  0cc0 10615   · cmul 10620  ccj 14545  chba 28854   · csm 28856   ·ih csp 28857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-hfvmul 28940  ax-hfi 29014  ax-his1 29017  ax-his3 29019
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-po 5442  df-so 5443  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-2 11779  df-cj 14548  df-re 14549  df-im 14550
This theorem is referenced by:  eigorth  29773
  Copyright terms: Public domain W3C validator