HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigorthi Structured version   Visualization version   GIF version

Theorem eigorthi 30199
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Jan-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigorthi.1 𝐴 ∈ ℋ
eigorthi.2 𝐵 ∈ ℋ
eigorthi.3 𝐶 ∈ ℂ
eigorthi.4 𝐷 ∈ ℂ
Assertion
Ref Expression
eigorthi ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))

Proof of Theorem eigorthi
StepHypRef Expression
1 oveq2 7283 . . . 4 ((𝑇𝐵) = (𝐷 · 𝐵) → (𝐴 ·ih (𝑇𝐵)) = (𝐴 ·ih (𝐷 · 𝐵)))
2 eigorthi.4 . . . . 5 𝐷 ∈ ℂ
3 eigorthi.1 . . . . 5 𝐴 ∈ ℋ
4 eigorthi.2 . . . . 5 𝐵 ∈ ℋ
5 his5 29448 . . . . 5 ((𝐷 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐷 · 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵)))
62, 3, 4, 5mp3an 1460 . . . 4 (𝐴 ·ih (𝐷 · 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵))
71, 6eqtrdi 2794 . . 3 ((𝑇𝐵) = (𝐷 · 𝐵) → (𝐴 ·ih (𝑇𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵)))
8 oveq1 7282 . . . 4 ((𝑇𝐴) = (𝐶 · 𝐴) → ((𝑇𝐴) ·ih 𝐵) = ((𝐶 · 𝐴) ·ih 𝐵))
9 eigorthi.3 . . . . 5 𝐶 ∈ ℂ
10 ax-his3 29446 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐶 · 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵)))
119, 3, 4, 10mp3an 1460 . . . 4 ((𝐶 · 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵))
128, 11eqtrdi 2794 . . 3 ((𝑇𝐴) = (𝐶 · 𝐴) → ((𝑇𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵)))
137, 12eqeqan12rd 2753 . 2 (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵))))
143, 4hicli 29443 . . . . . . . 8 (𝐴 ·ih 𝐵) ∈ ℂ
152cjcli 14880 . . . . . . . . 9 (∗‘𝐷) ∈ ℂ
16 mulcan2 11613 . . . . . . . . 9 (((∗‘𝐷) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0)) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
1715, 9, 16mp3an12 1450 . . . . . . . 8 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
1814, 17mpan 687 . . . . . . 7 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
19 eqcom 2745 . . . . . . 7 ((∗‘𝐷) = 𝐶𝐶 = (∗‘𝐷))
2018, 19bitrdi 287 . . . . . 6 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ 𝐶 = (∗‘𝐷)))
2120biimpcd 248 . . . . 5 (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → ((𝐴 ·ih 𝐵) ≠ 0 → 𝐶 = (∗‘𝐷)))
2221necon1d 2965 . . . 4 (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐶 ≠ (∗‘𝐷) → (𝐴 ·ih 𝐵) = 0))
2322com12 32 . . 3 (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐴 ·ih 𝐵) = 0))
24 oveq2 7283 . . . 4 ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0))
25 oveq2 7283 . . . . 5 ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = (𝐶 · 0))
269mul01i 11165 . . . . . 6 (𝐶 · 0) = 0
2715mul01i 11165 . . . . . 6 ((∗‘𝐷) · 0) = 0
2826, 27eqtr4i 2769 . . . . 5 (𝐶 · 0) = ((∗‘𝐷) · 0)
2925, 28eqtrdi 2794 . . . 4 ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0))
3024, 29eqtr4d 2781 . . 3 ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)))
3123, 30impbid1 224 . 2 (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (𝐴 ·ih 𝐵) = 0))
3213, 31sylan9bb 510 1 ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871   · cmul 10876  ccj 14807  chba 29281   · csm 29283   ·ih csp 29284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-hfvmul 29367  ax-hfi 29441  ax-his1 29444  ax-his3 29446
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-cj 14810  df-re 14811  df-im 14812
This theorem is referenced by:  eigorth  30200
  Copyright terms: Public domain W3C validator