HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigorthi Structured version   Visualization version   GIF version

Theorem eigorthi 31817
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Jan-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigorthi.1 𝐴 ∈ ℋ
eigorthi.2 𝐵 ∈ ℋ
eigorthi.3 𝐶 ∈ ℂ
eigorthi.4 𝐷 ∈ ℂ
Assertion
Ref Expression
eigorthi ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))

Proof of Theorem eigorthi
StepHypRef Expression
1 oveq2 7354 . . . 4 ((𝑇𝐵) = (𝐷 · 𝐵) → (𝐴 ·ih (𝑇𝐵)) = (𝐴 ·ih (𝐷 · 𝐵)))
2 eigorthi.4 . . . . 5 𝐷 ∈ ℂ
3 eigorthi.1 . . . . 5 𝐴 ∈ ℋ
4 eigorthi.2 . . . . 5 𝐵 ∈ ℋ
5 his5 31066 . . . . 5 ((𝐷 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐷 · 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵)))
62, 3, 4, 5mp3an 1463 . . . 4 (𝐴 ·ih (𝐷 · 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵))
71, 6eqtrdi 2782 . . 3 ((𝑇𝐵) = (𝐷 · 𝐵) → (𝐴 ·ih (𝑇𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵)))
8 oveq1 7353 . . . 4 ((𝑇𝐴) = (𝐶 · 𝐴) → ((𝑇𝐴) ·ih 𝐵) = ((𝐶 · 𝐴) ·ih 𝐵))
9 eigorthi.3 . . . . 5 𝐶 ∈ ℂ
10 ax-his3 31064 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐶 · 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵)))
119, 3, 4, 10mp3an 1463 . . . 4 ((𝐶 · 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵))
128, 11eqtrdi 2782 . . 3 ((𝑇𝐴) = (𝐶 · 𝐴) → ((𝑇𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵)))
137, 12eqeqan12rd 2746 . 2 (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵))))
143, 4hicli 31061 . . . . . . . 8 (𝐴 ·ih 𝐵) ∈ ℂ
152cjcli 15076 . . . . . . . . 9 (∗‘𝐷) ∈ ℂ
16 mulcan2 11755 . . . . . . . . 9 (((∗‘𝐷) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0)) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
1715, 9, 16mp3an12 1453 . . . . . . . 8 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
1814, 17mpan 690 . . . . . . 7 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
19 eqcom 2738 . . . . . . 7 ((∗‘𝐷) = 𝐶𝐶 = (∗‘𝐷))
2018, 19bitrdi 287 . . . . . 6 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ 𝐶 = (∗‘𝐷)))
2120biimpcd 249 . . . . 5 (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → ((𝐴 ·ih 𝐵) ≠ 0 → 𝐶 = (∗‘𝐷)))
2221necon1d 2950 . . . 4 (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐶 ≠ (∗‘𝐷) → (𝐴 ·ih 𝐵) = 0))
2322com12 32 . . 3 (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐴 ·ih 𝐵) = 0))
24 oveq2 7354 . . . 4 ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0))
25 oveq2 7354 . . . . 5 ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = (𝐶 · 0))
269mul01i 11303 . . . . . 6 (𝐶 · 0) = 0
2715mul01i 11303 . . . . . 6 ((∗‘𝐷) · 0) = 0
2826, 27eqtr4i 2757 . . . . 5 (𝐶 · 0) = ((∗‘𝐷) · 0)
2925, 28eqtrdi 2782 . . . 4 ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0))
3024, 29eqtr4d 2769 . . 3 ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)))
3123, 30impbid1 225 . 2 (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (𝐴 ·ih 𝐵) = 0))
3213, 31sylan9bb 509 1 ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006   · cmul 11011  ccj 15003  chba 30899   · csm 30901   ·ih csp 30902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-hfvmul 30985  ax-hfi 31059  ax-his1 31062  ax-his3 31064
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-cj 15006  df-re 15007  df-im 15008
This theorem is referenced by:  eigorth  31818
  Copyright terms: Public domain W3C validator