![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > eigorthi | Structured version Visualization version GIF version |
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Jan-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eigorthi.1 | ⊢ 𝐴 ∈ ℋ |
eigorthi.2 | ⊢ 𝐵 ∈ ℋ |
eigorthi.3 | ⊢ 𝐶 ∈ ℂ |
eigorthi.4 | ⊢ 𝐷 ∈ ℂ |
Ref | Expression |
---|---|
eigorthi | ⊢ ((((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7439 | . . . 4 ⊢ ((𝑇‘𝐵) = (𝐷 ·ℎ 𝐵) → (𝐴 ·ih (𝑇‘𝐵)) = (𝐴 ·ih (𝐷 ·ℎ 𝐵))) | |
2 | eigorthi.4 | . . . . 5 ⊢ 𝐷 ∈ ℂ | |
3 | eigorthi.1 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
4 | eigorthi.2 | . . . . 5 ⊢ 𝐵 ∈ ℋ | |
5 | his5 31115 | . . . . 5 ⊢ ((𝐷 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐷 ·ℎ 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵))) | |
6 | 2, 3, 4, 5 | mp3an 1460 | . . . 4 ⊢ (𝐴 ·ih (𝐷 ·ℎ 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵)) |
7 | 1, 6 | eqtrdi 2791 | . . 3 ⊢ ((𝑇‘𝐵) = (𝐷 ·ℎ 𝐵) → (𝐴 ·ih (𝑇‘𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵))) |
8 | oveq1 7438 | . . . 4 ⊢ ((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) → ((𝑇‘𝐴) ·ih 𝐵) = ((𝐶 ·ℎ 𝐴) ·ih 𝐵)) | |
9 | eigorthi.3 | . . . . 5 ⊢ 𝐶 ∈ ℂ | |
10 | ax-his3 31113 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐶 ·ℎ 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵))) | |
11 | 9, 3, 4, 10 | mp3an 1460 | . . . 4 ⊢ ((𝐶 ·ℎ 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵)) |
12 | 8, 11 | eqtrdi 2791 | . . 3 ⊢ ((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵))) |
13 | 7, 12 | eqeqan12rd 2750 | . 2 ⊢ (((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)))) |
14 | 3, 4 | hicli 31110 | . . . . . . . 8 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
15 | 2 | cjcli 15205 | . . . . . . . . 9 ⊢ (∗‘𝐷) ∈ ℂ |
16 | mulcan2 11899 | . . . . . . . . 9 ⊢ (((∗‘𝐷) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0)) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶)) | |
17 | 15, 9, 16 | mp3an12 1450 | . . . . . . . 8 ⊢ (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶)) |
18 | 14, 17 | mpan 690 | . . . . . . 7 ⊢ ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶)) |
19 | eqcom 2742 | . . . . . . 7 ⊢ ((∗‘𝐷) = 𝐶 ↔ 𝐶 = (∗‘𝐷)) | |
20 | 18, 19 | bitrdi 287 | . . . . . 6 ⊢ ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ 𝐶 = (∗‘𝐷))) |
21 | 20 | biimpcd 249 | . . . . 5 ⊢ (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → ((𝐴 ·ih 𝐵) ≠ 0 → 𝐶 = (∗‘𝐷))) |
22 | 21 | necon1d 2960 | . . . 4 ⊢ (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐶 ≠ (∗‘𝐷) → (𝐴 ·ih 𝐵) = 0)) |
23 | 22 | com12 32 | . . 3 ⊢ (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐴 ·ih 𝐵) = 0)) |
24 | oveq2 7439 | . . . 4 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0)) | |
25 | oveq2 7439 | . . . . 5 ⊢ ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = (𝐶 · 0)) | |
26 | 9 | mul01i 11449 | . . . . . 6 ⊢ (𝐶 · 0) = 0 |
27 | 15 | mul01i 11449 | . . . . . 6 ⊢ ((∗‘𝐷) · 0) = 0 |
28 | 26, 27 | eqtr4i 2766 | . . . . 5 ⊢ (𝐶 · 0) = ((∗‘𝐷) · 0) |
29 | 25, 28 | eqtrdi 2791 | . . . 4 ⊢ ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0)) |
30 | 24, 29 | eqtr4d 2778 | . . 3 ⊢ ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵))) |
31 | 23, 30 | impbid1 225 | . 2 ⊢ (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (𝐴 ·ih 𝐵) = 0)) |
32 | 13, 31 | sylan9bb 509 | 1 ⊢ ((((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 0cc0 11153 · cmul 11158 ∗ccj 15132 ℋchba 30948 ·ℎ csm 30950 ·ih csp 30951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-hfvmul 31034 ax-hfi 31108 ax-his1 31111 ax-his3 31113 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-2 12327 df-cj 15135 df-re 15136 df-im 15137 |
This theorem is referenced by: eigorth 31867 |
Copyright terms: Public domain | W3C validator |