HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigorthi Structured version   Visualization version   GIF version

Theorem eigorthi 31866
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Jan-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigorthi.1 𝐴 ∈ ℋ
eigorthi.2 𝐵 ∈ ℋ
eigorthi.3 𝐶 ∈ ℂ
eigorthi.4 𝐷 ∈ ℂ
Assertion
Ref Expression
eigorthi ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))

Proof of Theorem eigorthi
StepHypRef Expression
1 oveq2 7439 . . . 4 ((𝑇𝐵) = (𝐷 · 𝐵) → (𝐴 ·ih (𝑇𝐵)) = (𝐴 ·ih (𝐷 · 𝐵)))
2 eigorthi.4 . . . . 5 𝐷 ∈ ℂ
3 eigorthi.1 . . . . 5 𝐴 ∈ ℋ
4 eigorthi.2 . . . . 5 𝐵 ∈ ℋ
5 his5 31115 . . . . 5 ((𝐷 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐷 · 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵)))
62, 3, 4, 5mp3an 1460 . . . 4 (𝐴 ·ih (𝐷 · 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵))
71, 6eqtrdi 2791 . . 3 ((𝑇𝐵) = (𝐷 · 𝐵) → (𝐴 ·ih (𝑇𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵)))
8 oveq1 7438 . . . 4 ((𝑇𝐴) = (𝐶 · 𝐴) → ((𝑇𝐴) ·ih 𝐵) = ((𝐶 · 𝐴) ·ih 𝐵))
9 eigorthi.3 . . . . 5 𝐶 ∈ ℂ
10 ax-his3 31113 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐶 · 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵)))
119, 3, 4, 10mp3an 1460 . . . 4 ((𝐶 · 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵))
128, 11eqtrdi 2791 . . 3 ((𝑇𝐴) = (𝐶 · 𝐴) → ((𝑇𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵)))
137, 12eqeqan12rd 2750 . 2 (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵))))
143, 4hicli 31110 . . . . . . . 8 (𝐴 ·ih 𝐵) ∈ ℂ
152cjcli 15205 . . . . . . . . 9 (∗‘𝐷) ∈ ℂ
16 mulcan2 11899 . . . . . . . . 9 (((∗‘𝐷) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0)) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
1715, 9, 16mp3an12 1450 . . . . . . . 8 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
1814, 17mpan 690 . . . . . . 7 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
19 eqcom 2742 . . . . . . 7 ((∗‘𝐷) = 𝐶𝐶 = (∗‘𝐷))
2018, 19bitrdi 287 . . . . . 6 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ 𝐶 = (∗‘𝐷)))
2120biimpcd 249 . . . . 5 (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → ((𝐴 ·ih 𝐵) ≠ 0 → 𝐶 = (∗‘𝐷)))
2221necon1d 2960 . . . 4 (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐶 ≠ (∗‘𝐷) → (𝐴 ·ih 𝐵) = 0))
2322com12 32 . . 3 (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐴 ·ih 𝐵) = 0))
24 oveq2 7439 . . . 4 ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0))
25 oveq2 7439 . . . . 5 ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = (𝐶 · 0))
269mul01i 11449 . . . . . 6 (𝐶 · 0) = 0
2715mul01i 11449 . . . . . 6 ((∗‘𝐷) · 0) = 0
2826, 27eqtr4i 2766 . . . . 5 (𝐶 · 0) = ((∗‘𝐷) · 0)
2925, 28eqtrdi 2791 . . . 4 ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0))
3024, 29eqtr4d 2778 . . 3 ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)))
3123, 30impbid1 225 . 2 (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (𝐴 ·ih 𝐵) = 0))
3213, 31sylan9bb 509 1 ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153   · cmul 11158  ccj 15132  chba 30948   · csm 30950   ·ih csp 30951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-hfvmul 31034  ax-hfi 31108  ax-his1 31111  ax-his3 31113
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-cj 15135  df-re 15136  df-im 15137
This theorem is referenced by:  eigorth  31867
  Copyright terms: Public domain W3C validator