Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . . . 7
β’ ((π β§ ( β₯ β( β₯
β(πΏβπΊ))) β (πΏβπΊ)) β ( β₯ β( β₯
β(πΏβπΊ))) β (πΏβπΊ)) |
2 | | dochkrshp.h |
. . . . . . . 8
β’ π» = (LHypβπΎ) |
3 | | dochkrshp.o |
. . . . . . . 8
β’ β₯ =
((ocHβπΎ)βπ) |
4 | | dochkrshp.u |
. . . . . . . 8
β’ π = ((DVecHβπΎ)βπ) |
5 | | dochkrshp.v |
. . . . . . . 8
β’ π = (Baseβπ) |
6 | | dochkrshp.y |
. . . . . . . 8
β’ π = (LSHypβπ) |
7 | | dochkrshp.k |
. . . . . . . . 9
β’ (π β (πΎ β HL β§ π β π»)) |
8 | 7 | adantr 481 |
. . . . . . . 8
β’ ((π β§ ( β₯ β( β₯
β(πΏβπΊ))) β (πΏβπΊ)) β (πΎ β HL β§ π β π»)) |
9 | | 2fveq3 6896 |
. . . . . . . . . . . . . 14
β’ ((πΏβπΊ) = π β ( β₯ β( β₯
β(πΏβπΊ))) = ( β₯ β( β₯
βπ))) |
10 | 2, 4, 3, 5, 7 | dochoc1 40227 |
. . . . . . . . . . . . . 14
β’ (π β ( β₯ β( β₯
βπ)) = π) |
11 | 9, 10 | sylan9eqr 2794 |
. . . . . . . . . . . . 13
β’ ((π β§ (πΏβπΊ) = π) β ( β₯ β( β₯
β(πΏβπΊ))) = π) |
12 | | simpr 485 |
. . . . . . . . . . . . 13
β’ ((π β§ (πΏβπΊ) = π) β (πΏβπΊ) = π) |
13 | 11, 12 | eqtr4d 2775 |
. . . . . . . . . . . 12
β’ ((π β§ (πΏβπΊ) = π) β ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ)) |
14 | 13 | ex 413 |
. . . . . . . . . . 11
β’ (π β ((πΏβπΊ) = π β ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ))) |
15 | 14 | necon3d 2961 |
. . . . . . . . . 10
β’ (π β (( β₯ β( β₯
β(πΏβπΊ))) β (πΏβπΊ) β (πΏβπΊ) β π)) |
16 | | df-ne 2941 |
. . . . . . . . . . 11
β’ ((πΏβπΊ) β π β Β¬ (πΏβπΊ) = π) |
17 | | dochkrshp.f |
. . . . . . . . . . . . . 14
β’ πΉ = (LFnlβπ) |
18 | | dochkrshp.l |
. . . . . . . . . . . . . 14
β’ πΏ = (LKerβπ) |
19 | 2, 4, 7 | dvhlvec 39975 |
. . . . . . . . . . . . . 14
β’ (π β π β LVec) |
20 | | dochkrshp.g |
. . . . . . . . . . . . . 14
β’ (π β πΊ β πΉ) |
21 | 5, 6, 17, 18, 19, 20 | lkrshpor 37972 |
. . . . . . . . . . . . 13
β’ (π β ((πΏβπΊ) β π β¨ (πΏβπΊ) = π)) |
22 | 21 | orcomd 869 |
. . . . . . . . . . . 12
β’ (π β ((πΏβπΊ) = π β¨ (πΏβπΊ) β π)) |
23 | 22 | ord 862 |
. . . . . . . . . . 11
β’ (π β (Β¬ (πΏβπΊ) = π β (πΏβπΊ) β π)) |
24 | 16, 23 | biimtrid 241 |
. . . . . . . . . 10
β’ (π β ((πΏβπΊ) β π β (πΏβπΊ) β π)) |
25 | 15, 24 | syld 47 |
. . . . . . . . 9
β’ (π β (( β₯ β( β₯
β(πΏβπΊ))) β (πΏβπΊ) β (πΏβπΊ) β π)) |
26 | 25 | imp 407 |
. . . . . . . 8
β’ ((π β§ ( β₯ β( β₯
β(πΏβπΊ))) β (πΏβπΊ)) β (πΏβπΊ) β π) |
27 | 2, 3, 4, 5, 6, 8, 26 | dochshpncl 40250 |
. . . . . . 7
β’ ((π β§ ( β₯ β( β₯
β(πΏβπΊ))) β (πΏβπΊ)) β (( β₯ β( β₯
β(πΏβπΊ))) β (πΏβπΊ) β ( β₯ β( β₯
β(πΏβπΊ))) = π)) |
28 | 1, 27 | mpbid 231 |
. . . . . 6
β’ ((π β§ ( β₯ β( β₯
β(πΏβπΊ))) β (πΏβπΊ)) β ( β₯ β( β₯
β(πΏβπΊ))) = π) |
29 | 28 | ex 413 |
. . . . 5
β’ (π β (( β₯ β( β₯
β(πΏβπΊ))) β (πΏβπΊ) β ( β₯ β( β₯
β(πΏβπΊ))) = π)) |
30 | 29 | necon1d 2962 |
. . . 4
β’ (π β (( β₯ β( β₯
β(πΏβπΊ))) β π β ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ))) |
31 | 11 | ex 413 |
. . . . . 6
β’ (π β ((πΏβπΊ) = π β ( β₯ β( β₯
β(πΏβπΊ))) = π)) |
32 | 31 | necon3ad 2953 |
. . . . 5
β’ (π β (( β₯ β( β₯
β(πΏβπΊ))) β π β Β¬ (πΏβπΊ) = π)) |
33 | 32, 23 | syld 47 |
. . . 4
β’ (π β (( β₯ β( β₯
β(πΏβπΊ))) β π β (πΏβπΊ) β π)) |
34 | 30, 33 | jcad 513 |
. . 3
β’ (π β (( β₯ β( β₯
β(πΏβπΊ))) β π β (( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ) β§ (πΏβπΊ) β π))) |
35 | 2, 3, 4, 17, 6, 18, 7, 20 | dochlkr 40251 |
. . 3
β’ (π β (( β₯ β( β₯
β(πΏβπΊ))) β π β (( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ) β§ (πΏβπΊ) β π))) |
36 | 34, 35 | sylibrd 258 |
. 2
β’ (π β (( β₯ β( β₯
β(πΏβπΊ))) β π β ( β₯ β( β₯
β(πΏβπΊ))) β π)) |
37 | 2, 4, 7 | dvhlmod 39976 |
. . . . 5
β’ (π β π β LMod) |
38 | 37 | adantr 481 |
. . . 4
β’ ((π β§ ( β₯ β( β₯
β(πΏβπΊ))) β π) β π β LMod) |
39 | | simpr 485 |
. . . 4
β’ ((π β§ ( β₯ β( β₯
β(πΏβπΊ))) β π) β ( β₯ β( β₯
β(πΏβπΊ))) β π) |
40 | 5, 6, 38, 39 | lshpne 37847 |
. . 3
β’ ((π β§ ( β₯ β( β₯
β(πΏβπΊ))) β π) β ( β₯ β( β₯
β(πΏβπΊ))) β π) |
41 | 40 | ex 413 |
. 2
β’ (π β (( β₯ β( β₯
β(πΏβπΊ))) β π β ( β₯ β( β₯
β(πΏβπΊ))) β π)) |
42 | 36, 41 | impbid 211 |
1
β’ (π β (( β₯ β( β₯
β(πΏβπΊ))) β π β ( β₯ β( β₯
β(πΏβπΊ))) β π)) |