| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dochkrshp | Structured version Visualization version GIF version | ||
| Description: The closure of a kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| dochkrshp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dochkrshp.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| dochkrshp.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dochkrshp.v | ⊢ 𝑉 = (Base‘𝑈) |
| dochkrshp.y | ⊢ 𝑌 = (LSHyp‘𝑈) |
| dochkrshp.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| dochkrshp.l | ⊢ 𝐿 = (LKer‘𝑈) |
| dochkrshp.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dochkrshp.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| dochkrshp | ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) | |
| 2 | dochkrshp.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | dochkrshp.o | . . . . . . . 8 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 4 | dochkrshp.u | . . . . . . . 8 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | dochkrshp.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑈) | |
| 6 | dochkrshp.y | . . . . . . . 8 ⊢ 𝑌 = (LSHyp‘𝑈) | |
| 7 | dochkrshp.k | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 9 | 2fveq3 6827 | . . . . . . . . . . . . . 14 ⊢ ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘𝑉))) | |
| 10 | 2, 4, 3, 5, 7 | dochoc1 41470 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
| 11 | 9, 10 | sylan9eqr 2788 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉) |
| 12 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → (𝐿‘𝐺) = 𝑉) | |
| 13 | 11, 12 | eqtr4d 2769 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
| 14 | 13 | ex 412 | . . . . . . . . . . 11 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 15 | 14 | necon3d 2949 | . . . . . . . . . 10 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) → (𝐿‘𝐺) ≠ 𝑉)) |
| 16 | df-ne 2929 | . . . . . . . . . . 11 ⊢ ((𝐿‘𝐺) ≠ 𝑉 ↔ ¬ (𝐿‘𝐺) = 𝑉) | |
| 17 | dochkrshp.f | . . . . . . . . . . . . . 14 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 18 | dochkrshp.l | . . . . . . . . . . . . . 14 ⊢ 𝐿 = (LKer‘𝑈) | |
| 19 | 2, 4, 7 | dvhlvec 41218 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 20 | dochkrshp.g | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 21 | 5, 6, 17, 18, 19, 20 | lkrshpor 39216 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐿‘𝐺) ∈ 𝑌 ∨ (𝐿‘𝐺) = 𝑉)) |
| 22 | 21 | orcomd 871 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 ∨ (𝐿‘𝐺) ∈ 𝑌)) |
| 23 | 22 | ord 864 | . . . . . . . . . . 11 ⊢ (𝜑 → (¬ (𝐿‘𝐺) = 𝑉 → (𝐿‘𝐺) ∈ 𝑌)) |
| 24 | 16, 23 | biimtrid 242 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐿‘𝐺) ≠ 𝑉 → (𝐿‘𝐺) ∈ 𝑌)) |
| 25 | 15, 24 | syld 47 | . . . . . . . . 9 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) → (𝐿‘𝐺) ∈ 𝑌)) |
| 26 | 25 | imp 406 | . . . . . . . 8 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → (𝐿‘𝐺) ∈ 𝑌) |
| 27 | 2, 3, 4, 5, 6, 8, 26 | dochshpncl 41493 | . . . . . . 7 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉)) |
| 28 | 1, 27 | mpbid 232 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉) |
| 29 | 28 | ex 412 | . . . . 5 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉)) |
| 30 | 29 | necon1d 2950 | . . . 4 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 31 | 11 | ex 412 | . . . . . 6 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉)) |
| 32 | 31 | necon3ad 2941 | . . . . 5 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → ¬ (𝐿‘𝐺) = 𝑉)) |
| 33 | 32, 23 | syld 47 | . . . 4 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → (𝐿‘𝐺) ∈ 𝑌)) |
| 34 | 30, 33 | jcad 512 | . . 3 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌))) |
| 35 | 2, 3, 4, 17, 6, 18, 7, 20 | dochlkr 41494 | . . 3 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌))) |
| 36 | 34, 35 | sylibrd 259 | . 2 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌)) |
| 37 | 2, 4, 7 | dvhlmod 41219 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 38 | 37 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → 𝑈 ∈ LMod) |
| 39 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) | |
| 40 | 5, 6, 38, 39 | lshpne 39091 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) |
| 41 | 40 | ex 412 | . 2 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉)) |
| 42 | 36, 41 | impbid 212 | 1 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 Basecbs 17120 LModclmod 20793 LSHypclsh 39084 LFnlclfn 39166 LKerclk 39194 HLchlt 39459 LHypclh 40093 DVecHcdvh 41187 ocHcoch 41456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-riotaBAD 39062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19229 df-lsm 19548 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-drng 20646 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lvec 21037 df-lsatoms 39085 df-lshyp 39086 df-lfl 39167 df-lkr 39195 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 df-lines 39610 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-lhyp 40097 df-laut 40098 df-ldil 40213 df-ltrn 40214 df-trl 40268 df-tendo 40864 df-edring 40866 df-disoa 41138 df-dvech 41188 df-dib 41248 df-dic 41282 df-dih 41338 df-doch 41457 |
| This theorem is referenced by: dochkrshp2 41496 dochkrsat 41564 |
| Copyright terms: Public domain | W3C validator |