Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochkrshp | Structured version Visualization version GIF version |
Description: The closure of a kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
Ref | Expression |
---|---|
dochkrshp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochkrshp.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochkrshp.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochkrshp.v | ⊢ 𝑉 = (Base‘𝑈) |
dochkrshp.y | ⊢ 𝑌 = (LSHyp‘𝑈) |
dochkrshp.f | ⊢ 𝐹 = (LFnl‘𝑈) |
dochkrshp.l | ⊢ 𝐿 = (LKer‘𝑈) |
dochkrshp.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochkrshp.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
dochkrshp | ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) | |
2 | dochkrshp.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | dochkrshp.o | . . . . . . . 8 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | dochkrshp.u | . . . . . . . 8 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | dochkrshp.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑈) | |
6 | dochkrshp.y | . . . . . . . 8 ⊢ 𝑌 = (LSHyp‘𝑈) | |
7 | dochkrshp.k | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | 7 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
9 | 2fveq3 6814 | . . . . . . . . . . . . . 14 ⊢ ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘𝑉))) | |
10 | 2, 4, 3, 5, 7 | dochoc1 39587 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
11 | 9, 10 | sylan9eqr 2799 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉) |
12 | simpr 485 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → (𝐿‘𝐺) = 𝑉) | |
13 | 11, 12 | eqtr4d 2780 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
14 | 13 | ex 413 | . . . . . . . . . . 11 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
15 | 14 | necon3d 2962 | . . . . . . . . . 10 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) → (𝐿‘𝐺) ≠ 𝑉)) |
16 | df-ne 2942 | . . . . . . . . . . 11 ⊢ ((𝐿‘𝐺) ≠ 𝑉 ↔ ¬ (𝐿‘𝐺) = 𝑉) | |
17 | dochkrshp.f | . . . . . . . . . . . . . 14 ⊢ 𝐹 = (LFnl‘𝑈) | |
18 | dochkrshp.l | . . . . . . . . . . . . . 14 ⊢ 𝐿 = (LKer‘𝑈) | |
19 | 2, 4, 7 | dvhlvec 39335 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑈 ∈ LVec) |
20 | dochkrshp.g | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
21 | 5, 6, 17, 18, 19, 20 | lkrshpor 37333 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐿‘𝐺) ∈ 𝑌 ∨ (𝐿‘𝐺) = 𝑉)) |
22 | 21 | orcomd 868 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 ∨ (𝐿‘𝐺) ∈ 𝑌)) |
23 | 22 | ord 861 | . . . . . . . . . . 11 ⊢ (𝜑 → (¬ (𝐿‘𝐺) = 𝑉 → (𝐿‘𝐺) ∈ 𝑌)) |
24 | 16, 23 | biimtrid 241 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐿‘𝐺) ≠ 𝑉 → (𝐿‘𝐺) ∈ 𝑌)) |
25 | 15, 24 | syld 47 | . . . . . . . . 9 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) → (𝐿‘𝐺) ∈ 𝑌)) |
26 | 25 | imp 407 | . . . . . . . 8 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → (𝐿‘𝐺) ∈ 𝑌) |
27 | 2, 3, 4, 5, 6, 8, 26 | dochshpncl 39610 | . . . . . . 7 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉)) |
28 | 1, 27 | mpbid 231 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉) |
29 | 28 | ex 413 | . . . . 5 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉)) |
30 | 29 | necon1d 2963 | . . . 4 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
31 | 11 | ex 413 | . . . . . 6 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉)) |
32 | 31 | necon3ad 2954 | . . . . 5 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → ¬ (𝐿‘𝐺) = 𝑉)) |
33 | 32, 23 | syld 47 | . . . 4 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → (𝐿‘𝐺) ∈ 𝑌)) |
34 | 30, 33 | jcad 513 | . . 3 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌))) |
35 | 2, 3, 4, 17, 6, 18, 7, 20 | dochlkr 39611 | . . 3 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌))) |
36 | 34, 35 | sylibrd 258 | . 2 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌)) |
37 | 2, 4, 7 | dvhlmod 39336 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
38 | 37 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → 𝑈 ∈ LMod) |
39 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) | |
40 | 5, 6, 38, 39 | lshpne 37208 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) |
41 | 40 | ex 413 | . 2 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉)) |
42 | 36, 41 | impbid 211 | 1 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ‘cfv 6463 Basecbs 16979 LModclmod 20194 LSHypclsh 37201 LFnlclfn 37283 LKerclk 37311 HLchlt 37576 LHypclh 38210 DVecHcdvh 39304 ocHcoch 39573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-riotaBAD 37179 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-tpos 8087 df-undef 8134 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-map 8663 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-n0 12304 df-z 12390 df-uz 12653 df-fz 13310 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-sca 17045 df-vsca 17046 df-0g 17219 df-proset 18080 df-poset 18098 df-plt 18115 df-lub 18131 df-glb 18132 df-join 18133 df-meet 18134 df-p0 18210 df-p1 18211 df-lat 18217 df-clat 18284 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-submnd 18498 df-grp 18647 df-minusg 18648 df-sbg 18649 df-subg 18819 df-cntz 18990 df-lsm 19308 df-cmn 19455 df-abl 19456 df-mgp 19788 df-ur 19805 df-ring 19852 df-oppr 19929 df-dvdsr 19950 df-unit 19951 df-invr 19981 df-dvr 19992 df-drng 20064 df-lmod 20196 df-lss 20265 df-lsp 20305 df-lvec 20436 df-lsatoms 37202 df-lshyp 37203 df-lfl 37284 df-lkr 37312 df-oposet 37402 df-ol 37404 df-oml 37405 df-covers 37492 df-ats 37493 df-atl 37524 df-cvlat 37548 df-hlat 37577 df-llines 37724 df-lplanes 37725 df-lvols 37726 df-lines 37727 df-psubsp 37729 df-pmap 37730 df-padd 38022 df-lhyp 38214 df-laut 38215 df-ldil 38330 df-ltrn 38331 df-trl 38385 df-tendo 38981 df-edring 38983 df-disoa 39255 df-dvech 39305 df-dib 39365 df-dic 39399 df-dih 39455 df-doch 39574 |
This theorem is referenced by: dochkrshp2 39613 dochkrsat 39681 |
Copyright terms: Public domain | W3C validator |