![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochkrshp | Structured version Visualization version GIF version |
Description: The closure of a kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
Ref | Expression |
---|---|
dochkrshp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochkrshp.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochkrshp.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochkrshp.v | ⊢ 𝑉 = (Base‘𝑈) |
dochkrshp.y | ⊢ 𝑌 = (LSHyp‘𝑈) |
dochkrshp.f | ⊢ 𝐹 = (LFnl‘𝑈) |
dochkrshp.l | ⊢ 𝐿 = (LKer‘𝑈) |
dochkrshp.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochkrshp.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
dochkrshp | ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . . . . . . 7 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) | |
2 | dochkrshp.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | dochkrshp.o | . . . . . . . 8 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | dochkrshp.u | . . . . . . . 8 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | dochkrshp.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑈) | |
6 | dochkrshp.y | . . . . . . . 8 ⊢ 𝑌 = (LSHyp‘𝑈) | |
7 | dochkrshp.k | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | 7 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
9 | 2fveq3 6898 | . . . . . . . . . . . . . 14 ⊢ ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘𝑉))) | |
10 | 2, 4, 3, 5, 7 | dochoc1 41073 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
11 | 9, 10 | sylan9eqr 2788 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉) |
12 | simpr 483 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → (𝐿‘𝐺) = 𝑉) | |
13 | 11, 12 | eqtr4d 2769 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
14 | 13 | ex 411 | . . . . . . . . . . 11 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
15 | 14 | necon3d 2951 | . . . . . . . . . 10 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) → (𝐿‘𝐺) ≠ 𝑉)) |
16 | df-ne 2931 | . . . . . . . . . . 11 ⊢ ((𝐿‘𝐺) ≠ 𝑉 ↔ ¬ (𝐿‘𝐺) = 𝑉) | |
17 | dochkrshp.f | . . . . . . . . . . . . . 14 ⊢ 𝐹 = (LFnl‘𝑈) | |
18 | dochkrshp.l | . . . . . . . . . . . . . 14 ⊢ 𝐿 = (LKer‘𝑈) | |
19 | 2, 4, 7 | dvhlvec 40821 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑈 ∈ LVec) |
20 | dochkrshp.g | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
21 | 5, 6, 17, 18, 19, 20 | lkrshpor 38818 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐿‘𝐺) ∈ 𝑌 ∨ (𝐿‘𝐺) = 𝑉)) |
22 | 21 | orcomd 869 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 ∨ (𝐿‘𝐺) ∈ 𝑌)) |
23 | 22 | ord 862 | . . . . . . . . . . 11 ⊢ (𝜑 → (¬ (𝐿‘𝐺) = 𝑉 → (𝐿‘𝐺) ∈ 𝑌)) |
24 | 16, 23 | biimtrid 241 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐿‘𝐺) ≠ 𝑉 → (𝐿‘𝐺) ∈ 𝑌)) |
25 | 15, 24 | syld 47 | . . . . . . . . 9 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) → (𝐿‘𝐺) ∈ 𝑌)) |
26 | 25 | imp 405 | . . . . . . . 8 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → (𝐿‘𝐺) ∈ 𝑌) |
27 | 2, 3, 4, 5, 6, 8, 26 | dochshpncl 41096 | . . . . . . 7 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉)) |
28 | 1, 27 | mpbid 231 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉) |
29 | 28 | ex 411 | . . . . 5 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ (𝐿‘𝐺) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉)) |
30 | 29 | necon1d 2952 | . . . 4 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
31 | 11 | ex 411 | . . . . . 6 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = 𝑉)) |
32 | 31 | necon3ad 2943 | . . . . 5 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → ¬ (𝐿‘𝐺) = 𝑉)) |
33 | 32, 23 | syld 47 | . . . 4 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → (𝐿‘𝐺) ∈ 𝑌)) |
34 | 30, 33 | jcad 511 | . . 3 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌))) |
35 | 2, 3, 4, 17, 6, 18, 7, 20 | dochlkr 41097 | . . 3 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ∈ 𝑌))) |
36 | 34, 35 | sylibrd 258 | . 2 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌)) |
37 | 2, 4, 7 | dvhlmod 40822 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
38 | 37 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → 𝑈 ∈ LMod) |
39 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) | |
40 | 5, 6, 38, 39 | lshpne 38693 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉) |
41 | 40 | ex 411 | . 2 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉)) |
42 | 36, 41 | impbid 211 | 1 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ‘cfv 6546 Basecbs 17208 LModclmod 20832 LSHypclsh 38686 LFnlclfn 38768 LKerclk 38796 HLchlt 39061 LHypclh 39696 DVecHcdvh 40790 ocHcoch 41059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-riotaBAD 38664 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-tpos 8233 df-undef 8280 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-n0 12519 df-z 12605 df-uz 12869 df-fz 13533 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-sca 17277 df-vsca 17278 df-0g 17451 df-proset 18315 df-poset 18333 df-plt 18350 df-lub 18366 df-glb 18367 df-join 18368 df-meet 18369 df-p0 18445 df-p1 18446 df-lat 18452 df-clat 18519 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-grp 18926 df-minusg 18927 df-sbg 18928 df-subg 19113 df-cntz 19307 df-lsm 19630 df-cmn 19776 df-abl 19777 df-mgp 20114 df-rng 20132 df-ur 20161 df-ring 20214 df-oppr 20312 df-dvdsr 20335 df-unit 20336 df-invr 20366 df-dvr 20379 df-drng 20705 df-lmod 20834 df-lss 20905 df-lsp 20945 df-lvec 21077 df-lsatoms 38687 df-lshyp 38688 df-lfl 38769 df-lkr 38797 df-oposet 38887 df-ol 38889 df-oml 38890 df-covers 38977 df-ats 38978 df-atl 39009 df-cvlat 39033 df-hlat 39062 df-llines 39210 df-lplanes 39211 df-lvols 39212 df-lines 39213 df-psubsp 39215 df-pmap 39216 df-padd 39508 df-lhyp 39700 df-laut 39701 df-ldil 39816 df-ltrn 39817 df-trl 39871 df-tendo 40467 df-edring 40469 df-disoa 40741 df-dvech 40791 df-dib 40851 df-dic 40885 df-dih 40941 df-doch 41060 |
This theorem is referenced by: dochkrshp2 41099 dochkrsat 41167 |
Copyright terms: Public domain | W3C validator |