MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xblss2ps Structured version   Visualization version   GIF version

Theorem xblss2ps 23103
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 23106 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Hypotheses
Ref Expression
xblss2ps.1 (𝜑𝐷 ∈ (PsMet‘𝑋))
xblss2ps.2 (𝜑𝑃𝑋)
xblss2ps.3 (𝜑𝑄𝑋)
xblss2ps.4 (𝜑𝑅 ∈ ℝ*)
xblss2ps.5 (𝜑𝑆 ∈ ℝ*)
xblss2ps.6 (𝜑 → (𝑃𝐷𝑄) ∈ ℝ)
xblss2ps.7 (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
Assertion
Ref Expression
xblss2ps (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))

Proof of Theorem xblss2ps
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xblss2ps.1 . . . . . 6 (𝜑𝐷 ∈ (PsMet‘𝑋))
2 xblss2ps.2 . . . . . 6 (𝜑𝑃𝑋)
3 xblss2ps.4 . . . . . 6 (𝜑𝑅 ∈ ℝ*)
4 elblps 23089 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
51, 2, 3, 4syl3anc 1368 . . . . 5 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
65simprbda 502 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥𝑋)
71adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝐷 ∈ (PsMet‘𝑋))
8 xblss2ps.3 . . . . . . . . 9 (𝜑𝑄𝑋)
98adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑄𝑋)
10 psmetcl 23009 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑄𝑋𝑥𝑋) → (𝑄𝐷𝑥) ∈ ℝ*)
117, 9, 6, 10syl3anc 1368 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) ∈ ℝ*)
1211adantr 484 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) ∈ ℝ*)
13 xblss2ps.6 . . . . . . . . . 10 (𝜑 → (𝑃𝐷𝑄) ∈ ℝ)
1413adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ∈ ℝ)
1514rexrd 10729 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ∈ ℝ*)
163adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑅 ∈ ℝ*)
1715, 16xaddcld 12735 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 𝑅) ∈ ℝ*)
1817adantr 484 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ∈ ℝ*)
19 xblss2ps.5 . . . . . . 7 (𝜑𝑆 ∈ ℝ*)
2019ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → 𝑆 ∈ ℝ*)
212adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑃𝑋)
22 psmetcl 23009 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
237, 21, 6, 22syl3anc 1368 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) ∈ ℝ*)
2415, 23xaddcld 12735 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) ∈ ℝ*)
25 psmettri2 23011 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑃𝑋𝑄𝑋𝑥𝑋)) → (𝑄𝐷𝑥) ≤ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)))
267, 21, 9, 6, 25syl13anc 1369 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) ≤ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)))
275simplbda 503 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) < 𝑅)
28 xltadd2 12691 . . . . . . . . . 10 (((𝑃𝐷𝑥) ∈ ℝ*𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑄) ∈ ℝ) → ((𝑃𝐷𝑥) < 𝑅 ↔ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅)))
2923, 16, 14, 28syl3anc 1368 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑥) < 𝑅 ↔ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅)))
3027, 29mpbid 235 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3111, 24, 17, 26, 30xrlelttrd 12594 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3231adantr 484 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3319adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑆 ∈ ℝ*)
3416xnegcld 12734 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → -𝑒𝑅 ∈ ℝ*)
3533, 34xaddcld 12735 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑆 +𝑒 -𝑒𝑅) ∈ ℝ*)
36 xblss2ps.7 . . . . . . . . . 10 (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
3736adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
38 xleadd1a 12687 . . . . . . . . 9 ((((𝑃𝐷𝑄) ∈ ℝ* ∧ (𝑆 +𝑒 -𝑒𝑅) ∈ ℝ*𝑅 ∈ ℝ*) ∧ (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅)) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
3915, 35, 16, 37, 38syl31anc 1370 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
4039adantr 484 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
41 xnpcan 12686 . . . . . . . 8 ((𝑆 ∈ ℝ*𝑅 ∈ ℝ) → ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅) = 𝑆)
4233, 41sylan 583 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅) = 𝑆)
4340, 42breqtrd 5058 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ 𝑆)
4412, 18, 20, 32, 43xrltletrd 12595 . . . . 5 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) < 𝑆)
4511adantr 484 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑄𝐷𝑥) ∈ ℝ*)
4613ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑄) ∈ ℝ)
47 simpll 766 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝜑)
48 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑥 ∈ (𝑃(ball‘𝐷)𝑅))
49 simpr 488 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑅 = +∞)
5049oveq2d 7166 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃(ball‘𝐷)𝑅) = (𝑃(ball‘𝐷)+∞))
5148, 50eleqtrd 2854 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑥 ∈ (𝑃(ball‘𝐷)+∞))
52 xblpnfps 23097 . . . . . . . . . . . 12 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (𝑥 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
531, 2, 52syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ)))
5453simplbda 503 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃𝐷𝑥) ∈ ℝ)
5547, 51, 54syl2anc 587 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑥) ∈ ℝ)
5646, 55readdcld 10708 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑃𝐷𝑄) + (𝑃𝐷𝑥)) ∈ ℝ)
5756rexrd 10729 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑃𝐷𝑄) + (𝑃𝐷𝑥)) ∈ ℝ*)
58 pnfxr 10733 . . . . . . . 8 +∞ ∈ ℝ*
5958a1i 11 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → +∞ ∈ ℝ*)
601ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝐷 ∈ (PsMet‘𝑋))
612ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑃𝑋)
628ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑄𝑋)
636adantr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑥𝑋)
6460, 61, 62, 63, 25syl13anc 1369 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑄𝐷𝑥) ≤ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)))
6546, 55rexaddd 12668 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) = ((𝑃𝐷𝑄) + (𝑃𝐷𝑥)))
6664, 65breqtrd 5058 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑄𝐷𝑥) ≤ ((𝑃𝐷𝑄) + (𝑃𝐷𝑥)))
6756ltpnfd 12557 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑃𝐷𝑄) + (𝑃𝐷𝑥)) < +∞)
6845, 57, 59, 66, 67xrlelttrd 12594 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑄𝐷𝑥) < +∞)
69 0xr 10726 . . . . . . . . . . 11 0 ∈ ℝ*
7069a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ∈ ℝ*)
71 psmetge0 23014 . . . . . . . . . . 11 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) → 0 ≤ (𝑃𝐷𝑄))
727, 21, 9, 71syl3anc 1368 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑃𝐷𝑄))
7370, 15, 35, 72, 37xrletrd 12596 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑆 +𝑒 -𝑒𝑅))
74 ge0nemnf 12607 . . . . . . . . 9 (((𝑆 +𝑒 -𝑒𝑅) ∈ ℝ* ∧ 0 ≤ (𝑆 +𝑒 -𝑒𝑅)) → (𝑆 +𝑒 -𝑒𝑅) ≠ -∞)
7535, 73, 74syl2anc 587 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑆 +𝑒 -𝑒𝑅) ≠ -∞)
7675adantr 484 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒 -𝑒𝑅) ≠ -∞)
7719ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑆 ∈ ℝ*)
78 xaddmnf1 12662 . . . . . . . . . . 11 ((𝑆 ∈ ℝ*𝑆 ≠ +∞) → (𝑆 +𝑒 -∞) = -∞)
7978ex 416 . . . . . . . . . 10 (𝑆 ∈ ℝ* → (𝑆 ≠ +∞ → (𝑆 +𝑒 -∞) = -∞))
8077, 79syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 ≠ +∞ → (𝑆 +𝑒 -∞) = -∞))
81 xnegeq 12641 . . . . . . . . . . . . 13 (𝑅 = +∞ → -𝑒𝑅 = -𝑒+∞)
8249, 81syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → -𝑒𝑅 = -𝑒+∞)
83 xnegpnf 12643 . . . . . . . . . . . 12 -𝑒+∞ = -∞
8482, 83eqtrdi 2809 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → -𝑒𝑅 = -∞)
8584oveq2d 7166 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒 -𝑒𝑅) = (𝑆 +𝑒 -∞))
8685eqeq1d 2760 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑆 +𝑒 -𝑒𝑅) = -∞ ↔ (𝑆 +𝑒 -∞) = -∞))
8780, 86sylibrd 262 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 ≠ +∞ → (𝑆 +𝑒 -𝑒𝑅) = -∞))
8887necon1d 2973 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑆 +𝑒 -𝑒𝑅) ≠ -∞ → 𝑆 = +∞))
8976, 88mpd 15 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑆 = +∞)
9068, 89breqtrrd 5060 . . . . 5 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑄𝐷𝑥) < 𝑆)
91 psmetge0 23014 . . . . . . . . . . 11 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
927, 21, 6, 91syl3anc 1368 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑃𝐷𝑥))
9370, 23, 16, 92, 27xrlelttrd 12594 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅)
9470, 16, 93xrltled 12584 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ 𝑅)
95 ge0nemnf 12607 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → 𝑅 ≠ -∞)
9616, 94, 95syl2anc 587 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑅 ≠ -∞)
9716, 96jca 515 . . . . . 6 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑅 ∈ ℝ*𝑅 ≠ -∞))
98 xrnemnf 12553 . . . . . 6 ((𝑅 ∈ ℝ*𝑅 ≠ -∞) ↔ (𝑅 ∈ ℝ ∨ 𝑅 = +∞))
9997, 98sylib 221 . . . . 5 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑅 ∈ ℝ ∨ 𝑅 = +∞))
10044, 90, 99mpjaodan 956 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) < 𝑆)
101 elblps 23089 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑄𝑋𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
1027, 9, 33, 101syl3anc 1368 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
1036, 100, 102mpbir2and 712 . . 3 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ (𝑄(ball‘𝐷)𝑆))
104103ex 416 . 2 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)))
105104ssrdv 3898 1 (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2951  wss 3858   class class class wbr 5032  cfv 6335  (class class class)co 7150  cr 10574  0cc0 10575   + caddc 10578  +∞cpnf 10710  -∞cmnf 10711  *cxr 10712   < clt 10713  cle 10714  -𝑒cxne 12545   +𝑒 cxad 12546  PsMetcpsmet 20150  ballcbl 20153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-po 5443  df-so 5444  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-2 11737  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-psmet 20158  df-bl 20161
This theorem is referenced by:  blss2ps  23105  ssblps  23124
  Copyright terms: Public domain W3C validator