| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lineintmo | Structured version Visualization version GIF version | ||
| Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| lineintmo | ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 656 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) | |
| 2 | linethru 36129 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → 𝐴 = (𝑥Line𝑦)) | |
| 3 | 2 | 3expa 1118 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → 𝐴 = (𝑥Line𝑦)) |
| 4 | linethru 36129 | . . . . . . . . . . . . 13 ⊢ ((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ≠ 𝑦) → 𝐵 = (𝑥Line𝑦)) | |
| 5 | 4 | 3expa 1118 | . . . . . . . . . . . 12 ⊢ (((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑥 ≠ 𝑦) → 𝐵 = (𝑥Line𝑦)) |
| 6 | eqtr3 2756 | . . . . . . . . . . . 12 ⊢ ((𝐴 = (𝑥Line𝑦) ∧ 𝐵 = (𝑥Line𝑦)) → 𝐴 = 𝐵) | |
| 7 | 3, 5, 6 | syl2an 596 | . . . . . . . . . . 11 ⊢ ((((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) ∧ ((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑥 ≠ 𝑦)) → 𝐴 = 𝐵) |
| 8 | 7 | anandirs 679 | . . . . . . . . . 10 ⊢ ((((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) ∧ 𝑥 ≠ 𝑦) → 𝐴 = 𝐵) |
| 9 | 8 | ex 412 | . . . . . . . . 9 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝑥 ≠ 𝑦 → 𝐴 = 𝐵)) |
| 10 | 9 | necon1d 2953 | . . . . . . . 8 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
| 11 | 10 | an4s 660 | . . . . . . 7 ⊢ (((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
| 12 | 1, 11 | sylan2b 594 | . . . . . 6 ⊢ (((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
| 13 | 12 | ex 412 | . . . . 5 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦))) |
| 14 | 13 | com23 86 | . . . 4 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) → (𝐴 ≠ 𝐵 → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦))) |
| 15 | 14 | 3impia 1117 | . . 3 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
| 16 | 15 | alrimivv 1927 | . 2 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
| 17 | eleq1w 2816 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 18 | eleq1w 2816 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 19 | 17, 18 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 20 | 19 | mo4 2564 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
| 21 | 16, 20 | sylibr 234 | 1 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∈ wcel 2107 ∃*wmo 2536 ≠ wne 2931 (class class class)co 7413 Linecline2 36110 LinesEEclines2 36112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-ec 8729 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-sum 15706 df-ee 28837 df-btwn 28838 df-cgr 28839 df-ofs 35959 df-colinear 36015 df-ifs 36016 df-cgr3 36017 df-fs 36018 df-line2 36113 df-lines2 36115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |