Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineintmo Structured version   Visualization version   GIF version

Theorem lineintmo 34153
Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
lineintmo ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴𝐵) → ∃*𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem lineintmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 an4 656 . . . . . . 7 (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝐵𝑦𝐵)))
2 linethru 34149 . . . . . . . . . . . . 13 ((𝐴 ∈ LinesEE ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → 𝐴 = (𝑥Line𝑦))
323expa 1120 . . . . . . . . . . . 12 (((𝐴 ∈ LinesEE ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → 𝐴 = (𝑥Line𝑦))
4 linethru 34149 . . . . . . . . . . . . 13 ((𝐵 ∈ LinesEE ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑥𝑦) → 𝐵 = (𝑥Line𝑦))
543expa 1120 . . . . . . . . . . . 12 (((𝐵 ∈ LinesEE ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑥𝑦) → 𝐵 = (𝑥Line𝑦))
6 eqtr3 2760 . . . . . . . . . . . 12 ((𝐴 = (𝑥Line𝑦) ∧ 𝐵 = (𝑥Line𝑦)) → 𝐴 = 𝐵)
73, 5, 6syl2an 599 . . . . . . . . . . 11 ((((𝐴 ∈ LinesEE ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) ∧ ((𝐵 ∈ LinesEE ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑥𝑦)) → 𝐴 = 𝐵)
87anandirs 679 . . . . . . . . . 10 ((((𝐴 ∈ LinesEE ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥𝐵𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴 = 𝐵)
98ex 416 . . . . . . . . 9 (((𝐴 ∈ LinesEE ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥𝐵𝑦𝐵))) → (𝑥𝑦𝐴 = 𝐵))
109necon1d 2957 . . . . . . . 8 (((𝐴 ∈ LinesEE ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥𝐵𝑦𝐵))) → (𝐴𝐵𝑥 = 𝑦))
1110an4s 660 . . . . . . 7 (((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝐵𝑦𝐵))) → (𝐴𝐵𝑥 = 𝑦))
121, 11sylan2b 597 . . . . . 6 (((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) → (𝐴𝐵𝑥 = 𝑦))
1312ex 416 . . . . 5 ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → (𝐴𝐵𝑥 = 𝑦)))
1413com23 86 . . . 4 ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) → (𝐴𝐵 → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦)))
15143impia 1119 . . 3 ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴𝐵) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
1615alrimivv 1936 . 2 ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴𝐵) → ∀𝑥𝑦(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
17 eleq1w 2816 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
18 eleq1w 2816 . . . 4 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
1917, 18anbi12d 634 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐵) ↔ (𝑦𝐴𝑦𝐵)))
2019mo4 2563 . 2 (∃*𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑥𝑦(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
2116, 20sylibr 237 1 ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴𝐵) → ∃*𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wal 1541   = wceq 1543  wcel 2110  ∃*wmo 2535  wne 2935  (class class class)co 7202  Linecline2 34130  LinesEEclines2 34132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-ec 8382  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-sum 15233  df-ee 26954  df-btwn 26955  df-cgr 26956  df-ofs 33979  df-colinear 34035  df-ifs 34036  df-cgr3 34037  df-fs 34038  df-line2 34133  df-lines2 34135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator