![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lineintmo | Structured version Visualization version GIF version |
Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
lineintmo | ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 653 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) | |
2 | linethru 35595 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → 𝐴 = (𝑥Line𝑦)) | |
3 | 2 | 3expa 1117 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → 𝐴 = (𝑥Line𝑦)) |
4 | linethru 35595 | . . . . . . . . . . . . 13 ⊢ ((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ≠ 𝑦) → 𝐵 = (𝑥Line𝑦)) | |
5 | 4 | 3expa 1117 | . . . . . . . . . . . 12 ⊢ (((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑥 ≠ 𝑦) → 𝐵 = (𝑥Line𝑦)) |
6 | eqtr3 2757 | . . . . . . . . . . . 12 ⊢ ((𝐴 = (𝑥Line𝑦) ∧ 𝐵 = (𝑥Line𝑦)) → 𝐴 = 𝐵) | |
7 | 3, 5, 6 | syl2an 595 | . . . . . . . . . . 11 ⊢ ((((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) ∧ ((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑥 ≠ 𝑦)) → 𝐴 = 𝐵) |
8 | 7 | anandirs 676 | . . . . . . . . . 10 ⊢ ((((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) ∧ 𝑥 ≠ 𝑦) → 𝐴 = 𝐵) |
9 | 8 | ex 412 | . . . . . . . . 9 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝑥 ≠ 𝑦 → 𝐴 = 𝐵)) |
10 | 9 | necon1d 2961 | . . . . . . . 8 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
11 | 10 | an4s 657 | . . . . . . 7 ⊢ (((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
12 | 1, 11 | sylan2b 593 | . . . . . 6 ⊢ (((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
13 | 12 | ex 412 | . . . . 5 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦))) |
14 | 13 | com23 86 | . . . 4 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) → (𝐴 ≠ 𝐵 → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦))) |
15 | 14 | 3impia 1116 | . . 3 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
16 | 15 | alrimivv 1930 | . 2 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
17 | eleq1w 2815 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
18 | eleq1w 2815 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
19 | 17, 18 | anbi12d 630 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
20 | 19 | mo4 2559 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
21 | 16, 20 | sylibr 233 | 1 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ∃*wmo 2531 ≠ wne 2939 (class class class)co 7412 Linecline2 35576 LinesEEclines2 35578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-ec 8711 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-sum 15640 df-ee 28582 df-btwn 28583 df-cgr 28584 df-ofs 35425 df-colinear 35481 df-ifs 35482 df-cgr3 35483 df-fs 35484 df-line2 35579 df-lines2 35581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |