![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lineintmo | Structured version Visualization version GIF version |
Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
lineintmo | ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 655 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) | |
2 | linethru 36117 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → 𝐴 = (𝑥Line𝑦)) | |
3 | 2 | 3expa 1118 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → 𝐴 = (𝑥Line𝑦)) |
4 | linethru 36117 | . . . . . . . . . . . . 13 ⊢ ((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ≠ 𝑦) → 𝐵 = (𝑥Line𝑦)) | |
5 | 4 | 3expa 1118 | . . . . . . . . . . . 12 ⊢ (((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑥 ≠ 𝑦) → 𝐵 = (𝑥Line𝑦)) |
6 | eqtr3 2766 | . . . . . . . . . . . 12 ⊢ ((𝐴 = (𝑥Line𝑦) ∧ 𝐵 = (𝑥Line𝑦)) → 𝐴 = 𝐵) | |
7 | 3, 5, 6 | syl2an 595 | . . . . . . . . . . 11 ⊢ ((((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) ∧ ((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑥 ≠ 𝑦)) → 𝐴 = 𝐵) |
8 | 7 | anandirs 678 | . . . . . . . . . 10 ⊢ ((((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) ∧ 𝑥 ≠ 𝑦) → 𝐴 = 𝐵) |
9 | 8 | ex 412 | . . . . . . . . 9 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝑥 ≠ 𝑦 → 𝐴 = 𝐵)) |
10 | 9 | necon1d 2968 | . . . . . . . 8 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
11 | 10 | an4s 659 | . . . . . . 7 ⊢ (((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
12 | 1, 11 | sylan2b 593 | . . . . . 6 ⊢ (((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
13 | 12 | ex 412 | . . . . 5 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦))) |
14 | 13 | com23 86 | . . . 4 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) → (𝐴 ≠ 𝐵 → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦))) |
15 | 14 | 3impia 1117 | . . 3 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
16 | 15 | alrimivv 1927 | . 2 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
17 | eleq1w 2827 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
18 | eleq1w 2827 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
19 | 17, 18 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
20 | 19 | mo4 2569 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
21 | 16, 20 | sylibr 234 | 1 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∃*wmo 2541 ≠ wne 2946 (class class class)co 7448 Linecline2 36098 LinesEEclines2 36100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-ec 8765 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-ee 28924 df-btwn 28925 df-cgr 28926 df-ofs 35947 df-colinear 36003 df-ifs 36004 df-cgr3 36005 df-fs 36006 df-line2 36101 df-lines2 36103 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |