| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lineintmo | Structured version Visualization version GIF version | ||
| Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| lineintmo | ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 656 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) | |
| 2 | linethru 36220 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → 𝐴 = (𝑥Line𝑦)) | |
| 3 | 2 | 3expa 1118 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) → 𝐴 = (𝑥Line𝑦)) |
| 4 | linethru 36220 | . . . . . . . . . . . . 13 ⊢ ((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 ≠ 𝑦) → 𝐵 = (𝑥Line𝑦)) | |
| 5 | 4 | 3expa 1118 | . . . . . . . . . . . 12 ⊢ (((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑥 ≠ 𝑦) → 𝐵 = (𝑥Line𝑦)) |
| 6 | eqtr3 2755 | . . . . . . . . . . . 12 ⊢ ((𝐴 = (𝑥Line𝑦) ∧ 𝐵 = (𝑥Line𝑦)) → 𝐴 = 𝐵) | |
| 7 | 3, 5, 6 | syl2an 596 | . . . . . . . . . . 11 ⊢ ((((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑥 ≠ 𝑦) ∧ ((𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑥 ≠ 𝑦)) → 𝐴 = 𝐵) |
| 8 | 7 | anandirs 679 | . . . . . . . . . 10 ⊢ ((((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) ∧ 𝑥 ≠ 𝑦) → 𝐴 = 𝐵) |
| 9 | 8 | ex 412 | . . . . . . . . 9 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝑥 ≠ 𝑦 → 𝐴 = 𝐵)) |
| 10 | 9 | necon1d 2951 | . . . . . . . 8 ⊢ (((𝐴 ∈ LinesEE ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
| 11 | 10 | an4s 660 | . . . . . . 7 ⊢ (((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
| 12 | 1, 11 | sylan2b 594 | . . . . . 6 ⊢ (((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦)) |
| 13 | 12 | ex 412 | . . . . 5 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝐴 ≠ 𝐵 → 𝑥 = 𝑦))) |
| 14 | 13 | com23 86 | . . . 4 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) → (𝐴 ≠ 𝐵 → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦))) |
| 15 | 14 | 3impia 1117 | . . 3 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
| 16 | 15 | alrimivv 1929 | . 2 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
| 17 | eleq1w 2816 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 18 | eleq1w 2816 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 19 | 17, 18 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 20 | 19 | mo4 2563 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝑥 = 𝑦)) |
| 21 | 16, 20 | sylibr 234 | 1 ⊢ ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴 ≠ 𝐵) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1539 = wceq 1541 ∈ wcel 2113 ∃*wmo 2535 ≠ wne 2929 (class class class)co 7354 Linecline2 36201 LinesEEclines2 36203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-ec 8632 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-ico 13255 df-icc 13256 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-sum 15598 df-ee 28872 df-btwn 28873 df-cgr 28874 df-ofs 36050 df-colinear 36106 df-ifs 36107 df-cgr3 36108 df-fs 36109 df-line2 36204 df-lines2 36206 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |