MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xblss2 Structured version   Visualization version   GIF version

Theorem xblss2 23155
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 23157 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
xblss2.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
xblss2.2 (𝜑𝑃𝑋)
xblss2.3 (𝜑𝑄𝑋)
xblss2.4 (𝜑𝑅 ∈ ℝ*)
xblss2.5 (𝜑𝑆 ∈ ℝ*)
xblss2.6 (𝜑 → (𝑃𝐷𝑄) ∈ ℝ)
xblss2.7 (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
Assertion
Ref Expression
xblss2 (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))

Proof of Theorem xblss2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xblss2.1 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 xblss2.2 . . . . . 6 (𝜑𝑃𝑋)
3 xblss2.4 . . . . . 6 (𝜑𝑅 ∈ ℝ*)
4 elbl 23141 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
51, 2, 3, 4syl3anc 1372 . . . . 5 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
65simprbda 502 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥𝑋)
71adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝐷 ∈ (∞Met‘𝑋))
8 xblss2.3 . . . . . . . . 9 (𝜑𝑄𝑋)
98adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑄𝑋)
10 xmetcl 23084 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑥𝑋) → (𝑄𝐷𝑥) ∈ ℝ*)
117, 9, 6, 10syl3anc 1372 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) ∈ ℝ*)
1211adantr 484 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) ∈ ℝ*)
13 xblss2.6 . . . . . . . . . 10 (𝜑 → (𝑃𝐷𝑄) ∈ ℝ)
1413adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ∈ ℝ)
1514rexrd 10769 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ∈ ℝ*)
163adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑅 ∈ ℝ*)
1715, 16xaddcld 12777 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 𝑅) ∈ ℝ*)
1817adantr 484 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ∈ ℝ*)
19 xblss2.5 . . . . . . 7 (𝜑𝑆 ∈ ℝ*)
2019ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → 𝑆 ∈ ℝ*)
212adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑃𝑋)
22 xmetcl 23084 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
237, 21, 6, 22syl3anc 1372 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) ∈ ℝ*)
2415, 23xaddcld 12777 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) ∈ ℝ*)
25 xmettri2 23093 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑃𝑋𝑄𝑋𝑥𝑋)) → (𝑄𝐷𝑥) ≤ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)))
267, 21, 9, 6, 25syl13anc 1373 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) ≤ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)))
275simplbda 503 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) < 𝑅)
28 xltadd2 12733 . . . . . . . . . 10 (((𝑃𝐷𝑥) ∈ ℝ*𝑅 ∈ ℝ* ∧ (𝑃𝐷𝑄) ∈ ℝ) → ((𝑃𝐷𝑥) < 𝑅 ↔ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅)))
2923, 16, 14, 28syl3anc 1372 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑥) < 𝑅 ↔ ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅)))
3027, 29mpbid 235 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 (𝑃𝐷𝑥)) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3111, 24, 17, 26, 30xrlelttrd 12636 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3231adantr 484 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) < ((𝑃𝐷𝑄) +𝑒 𝑅))
3319adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑆 ∈ ℝ*)
3416xnegcld 12776 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → -𝑒𝑅 ∈ ℝ*)
3533, 34xaddcld 12777 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑆 +𝑒 -𝑒𝑅) ∈ ℝ*)
36 xblss2.7 . . . . . . . . . 10 (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
3736adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
38 xleadd1a 12729 . . . . . . . . 9 ((((𝑃𝐷𝑄) ∈ ℝ* ∧ (𝑆 +𝑒 -𝑒𝑅) ∈ ℝ*𝑅 ∈ ℝ*) ∧ (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅)) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
3915, 35, 16, 37, 38syl31anc 1374 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
4039adantr 484 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅))
41 xnpcan 12728 . . . . . . . 8 ((𝑆 ∈ ℝ*𝑅 ∈ ℝ) → ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅) = 𝑆)
4233, 41sylan 583 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑆 +𝑒 -𝑒𝑅) +𝑒 𝑅) = 𝑆)
4340, 42breqtrd 5056 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → ((𝑃𝐷𝑄) +𝑒 𝑅) ≤ 𝑆)
4412, 18, 20, 32, 43xrltletrd 12637 . . . . 5 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 ∈ ℝ) → (𝑄𝐷𝑥) < 𝑆)
4527adantr 484 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑥) < 𝑅)
4636ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
47 0xr 10766 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
4847a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ∈ ℝ*)
49 xmetge0 23097 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) → 0 ≤ (𝑃𝐷𝑄))
507, 21, 9, 49syl3anc 1372 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑃𝐷𝑄))
5148, 15, 35, 50, 37xrletrd 12638 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑆 +𝑒 -𝑒𝑅))
52 ge0nemnf 12649 . . . . . . . . . . . . . 14 (((𝑆 +𝑒 -𝑒𝑅) ∈ ℝ* ∧ 0 ≤ (𝑆 +𝑒 -𝑒𝑅)) → (𝑆 +𝑒 -𝑒𝑅) ≠ -∞)
5335, 51, 52syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑆 +𝑒 -𝑒𝑅) ≠ -∞)
5453adantr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒 -𝑒𝑅) ≠ -∞)
5519ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑆 ∈ ℝ*)
56 xaddmnf1 12704 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℝ*𝑆 ≠ +∞) → (𝑆 +𝑒 -∞) = -∞)
5756ex 416 . . . . . . . . . . . . . . 15 (𝑆 ∈ ℝ* → (𝑆 ≠ +∞ → (𝑆 +𝑒 -∞) = -∞))
5855, 57syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 ≠ +∞ → (𝑆 +𝑒 -∞) = -∞))
59 simpr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑅 = +∞)
60 xnegeq 12683 . . . . . . . . . . . . . . . . . 18 (𝑅 = +∞ → -𝑒𝑅 = -𝑒+∞)
6159, 60syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → -𝑒𝑅 = -𝑒+∞)
62 xnegpnf 12685 . . . . . . . . . . . . . . . . 17 -𝑒+∞ = -∞
6361, 62eqtrdi 2789 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → -𝑒𝑅 = -∞)
6463oveq2d 7186 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒 -𝑒𝑅) = (𝑆 +𝑒 -∞))
6564eqeq1d 2740 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑆 +𝑒 -𝑒𝑅) = -∞ ↔ (𝑆 +𝑒 -∞) = -∞))
6658, 65sylibrd 262 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 ≠ +∞ → (𝑆 +𝑒 -𝑒𝑅) = -∞))
6766necon1d 2956 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑆 +𝑒 -𝑒𝑅) ≠ -∞ → 𝑆 = +∞))
6854, 67mpd 15 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑆 = +∞)
6968, 63oveq12d 7188 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒 -𝑒𝑅) = (+∞ +𝑒 -∞))
70 pnfaddmnf 12706 . . . . . . . . . 10 (+∞ +𝑒 -∞) = 0
7169, 70eqtrdi 2789 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑆 +𝑒 -𝑒𝑅) = 0)
7246, 71breqtrd 5056 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑄) ≤ 0)
7350biantrud 535 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) ≤ 0 ↔ ((𝑃𝐷𝑄) ≤ 0 ∧ 0 ≤ (𝑃𝐷𝑄))))
74 xrletri3 12630 . . . . . . . . . . 11 (((𝑃𝐷𝑄) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑃𝐷𝑄) = 0 ↔ ((𝑃𝐷𝑄) ≤ 0 ∧ 0 ≤ (𝑃𝐷𝑄))))
7515, 47, 74sylancl 589 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) = 0 ↔ ((𝑃𝐷𝑄) ≤ 0 ∧ 0 ≤ (𝑃𝐷𝑄))))
76 xmeteq0 23091 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) → ((𝑃𝐷𝑄) = 0 ↔ 𝑃 = 𝑄))
777, 21, 9, 76syl3anc 1372 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) = 0 ↔ 𝑃 = 𝑄))
7873, 75, 773bitr2d 310 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → ((𝑃𝐷𝑄) ≤ 0 ↔ 𝑃 = 𝑄))
7978adantr 484 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → ((𝑃𝐷𝑄) ≤ 0 ↔ 𝑃 = 𝑄))
8072, 79mpbid 235 . . . . . . 7 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑃 = 𝑄)
8180oveq1d 7185 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑃𝐷𝑥) = (𝑄𝐷𝑥))
8259, 68eqtr4d 2776 . . . . . 6 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → 𝑅 = 𝑆)
8345, 81, 823brtr3d 5061 . . . . 5 (((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) ∧ 𝑅 = +∞) → (𝑄𝐷𝑥) < 𝑆)
84 xmetge0 23097 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
857, 21, 6, 84syl3anc 1372 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ (𝑃𝐷𝑥))
8648, 23, 16, 85, 27xrlelttrd 12636 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅)
8748, 16, 86xrltled 12626 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 ≤ 𝑅)
88 ge0nemnf 12649 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → 𝑅 ≠ -∞)
8916, 87, 88syl2anc 587 . . . . . . 7 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑅 ≠ -∞)
9016, 89jca 515 . . . . . 6 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑅 ∈ ℝ*𝑅 ≠ -∞))
91 xrnemnf 12595 . . . . . 6 ((𝑅 ∈ ℝ*𝑅 ≠ -∞) ↔ (𝑅 ∈ ℝ ∨ 𝑅 = +∞))
9290, 91sylib 221 . . . . 5 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑅 ∈ ℝ ∨ 𝑅 = +∞))
9344, 83, 92mpjaodan 958 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑄𝐷𝑥) < 𝑆)
94 elbl 23141 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
957, 9, 33, 94syl3anc 1372 . . . 4 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
966, 93, 95mpbir2and 713 . . 3 ((𝜑𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ (𝑄(ball‘𝐷)𝑆))
9796ex 416 . 2 (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)))
9897ssrdv 3883 1 (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wcel 2114  wne 2934  wss 3843   class class class wbr 5030  cfv 6339  (class class class)co 7170  cr 10614  0cc0 10615  +∞cpnf 10750  -∞cmnf 10751  *cxr 10752   < clt 10753  cle 10754  -𝑒cxne 12587   +𝑒 cxad 12588  ∞Metcxmet 20202  ballcbl 20204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-po 5442  df-so 5443  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-1st 7714  df-2nd 7715  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-2 11779  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-psmet 20209  df-xmet 20210  df-bl 20212
This theorem is referenced by:  blss2  23157  ssbl  23176
  Copyright terms: Public domain W3C validator