Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3d | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006.) |
Ref | Expression |
---|---|
necon3d.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) |
Ref | Expression |
---|---|
necon3d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3d.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) | |
2 | 1 | necon3ad 2955 | . 2 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵)) |
3 | df-ne 2943 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
4 | 2, 3 | syl6ibr 251 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
Copyright terms: Public domain | W3C validator |