| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3d | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006.) |
| Ref | Expression |
|---|---|
| necon3d.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) |
| Ref | Expression |
|---|---|
| necon3d | ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3d.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝐶 = 𝐷)) | |
| 2 | 1 | necon3ad 2953 | . 2 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵)) |
| 3 | df-ne 2941 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 4 | 2, 3 | imbitrrdi 252 | 1 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵)) |
| Copyright terms: Public domain | W3C validator |