| Step | Hyp | Ref
| Expression |
| 1 | | axrep2 5257 |
. 2
⊢
∃𝑥(∃𝑦∀𝑤([𝑤 / 𝑧]𝜑 → 𝑤 = 𝑦) → ∀𝑤(𝑤 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦[𝑤 / 𝑧]𝜑))) |
| 2 | | nfnae 2439 |
. . 3
⊢
Ⅎ𝑥 ¬
∀𝑦 𝑦 = 𝑧 |
| 3 | | nfnae 2439 |
. . . . 5
⊢
Ⅎ𝑦 ¬
∀𝑦 𝑦 = 𝑧 |
| 4 | | nfnae 2439 |
. . . . . 6
⊢
Ⅎ𝑧 ¬
∀𝑦 𝑦 = 𝑧 |
| 5 | | nfs1v 2157 |
. . . . . . . 8
⊢
Ⅎ𝑧[𝑤 / 𝑧]𝜑 |
| 6 | 5 | a1i 11 |
. . . . . . 7
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧[𝑤 / 𝑧]𝜑) |
| 7 | | nfcvd 2900 |
. . . . . . . 8
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧𝑤) |
| 8 | | nfcvf2 2927 |
. . . . . . . 8
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧𝑦) |
| 9 | 7, 8 | nfeqd 2910 |
. . . . . . 7
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧 𝑤 = 𝑦) |
| 10 | 6, 9 | nfimd 1894 |
. . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧([𝑤 / 𝑧]𝜑 → 𝑤 = 𝑦)) |
| 11 | | sbequ12r 2253 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → ([𝑤 / 𝑧]𝜑 ↔ 𝜑)) |
| 12 | | equequ1 2025 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (𝑤 = 𝑦 ↔ 𝑧 = 𝑦)) |
| 13 | 11, 12 | imbi12d 344 |
. . . . . . 7
⊢ (𝑤 = 𝑧 → (([𝑤 / 𝑧]𝜑 → 𝑤 = 𝑦) ↔ (𝜑 → 𝑧 = 𝑦))) |
| 14 | 13 | a1i 11 |
. . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (𝑤 = 𝑧 → (([𝑤 / 𝑧]𝜑 → 𝑤 = 𝑦) ↔ (𝜑 → 𝑧 = 𝑦)))) |
| 15 | 4, 10, 14 | cbvald 2412 |
. . . . 5
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (∀𝑤([𝑤 / 𝑧]𝜑 → 𝑤 = 𝑦) ↔ ∀𝑧(𝜑 → 𝑧 = 𝑦))) |
| 16 | 3, 15 | exbid 2224 |
. . . 4
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (∃𝑦∀𝑤([𝑤 / 𝑧]𝜑 → 𝑤 = 𝑦) ↔ ∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦))) |
| 17 | | nfvd 1915 |
. . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧 𝑤 ∈ 𝑥) |
| 18 | 8 | nfcrd 2893 |
. . . . . . . 8
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧 𝑥 ∈ 𝑦) |
| 19 | 3, 6 | nfald 2329 |
. . . . . . . 8
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧∀𝑦[𝑤 / 𝑧]𝜑) |
| 20 | 18, 19 | nfand 1897 |
. . . . . . 7
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧(𝑥 ∈ 𝑦 ∧ ∀𝑦[𝑤 / 𝑧]𝜑)) |
| 21 | 2, 20 | nfexd 2330 |
. . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦[𝑤 / 𝑧]𝜑)) |
| 22 | 17, 21 | nfbid 1902 |
. . . . 5
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧(𝑤 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦[𝑤 / 𝑧]𝜑))) |
| 23 | | elequ1 2116 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥)) |
| 24 | 23 | adantl 481 |
. . . . . . 7
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧) → (𝑤 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥)) |
| 25 | | nfeqf2 2382 |
. . . . . . . . . . 11
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦 𝑤 = 𝑧) |
| 26 | 3, 25 | nfan1 2201 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(¬
∀𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧) |
| 27 | 11 | adantl 481 |
. . . . . . . . . 10
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧) → ([𝑤 / 𝑧]𝜑 ↔ 𝜑)) |
| 28 | 26, 27 | albid 2223 |
. . . . . . . . 9
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧) → (∀𝑦[𝑤 / 𝑧]𝜑 ↔ ∀𝑦𝜑)) |
| 29 | 28 | anbi2d 630 |
. . . . . . . 8
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧) → ((𝑥 ∈ 𝑦 ∧ ∀𝑦[𝑤 / 𝑧]𝜑) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
| 30 | 29 | exbidv 1921 |
. . . . . . 7
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧) → (∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦[𝑤 / 𝑧]𝜑) ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
| 31 | 24, 30 | bibi12d 345 |
. . . . . 6
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧) → ((𝑤 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦[𝑤 / 𝑧]𝜑)) ↔ (𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
| 32 | 31 | ex 412 |
. . . . 5
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (𝑤 = 𝑧 → ((𝑤 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦[𝑤 / 𝑧]𝜑)) ↔ (𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))))) |
| 33 | 4, 22, 32 | cbvald 2412 |
. . . 4
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (∀𝑤(𝑤 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦[𝑤 / 𝑧]𝜑)) ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
| 34 | 16, 33 | imbi12d 344 |
. . 3
⊢ (¬
∀𝑦 𝑦 = 𝑧 → ((∃𝑦∀𝑤([𝑤 / 𝑧]𝜑 → 𝑤 = 𝑦) → ∀𝑤(𝑤 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦[𝑤 / 𝑧]𝜑))) ↔ (∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))))) |
| 35 | 2, 34 | exbid 2224 |
. 2
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (∃𝑥(∃𝑦∀𝑤([𝑤 / 𝑧]𝜑 → 𝑤 = 𝑦) → ∀𝑤(𝑤 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦[𝑤 / 𝑧]𝜑))) ↔ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))))) |
| 36 | 1, 35 | mpbii 233 |
1
⊢ (¬
∀𝑦 𝑦 = 𝑧 → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |